• 締切済み

複素積分による距離の逆べき乗型関数のフーリエ変換

複素積分による距離の逆べき乗型関数のフーリエ変換 次の積分が解けずに困っております ∫(exp(i(k・x))/r^a)dx i:虚数単位 n,a:自然数 k=(k1,k2,…,kn)∈R^n x=(x1,x2,…,xn)∈R^n k・x=k1x1+k2x2+…+knxn r=√(x1^2+x2^2+…+xn^2) dx=dx1dx2…dxn 積分領域:R^n全体 この積分が,関数1/r^aのn次元フーリエ変換 (kは逆符号ですが)であることはわかるのですが, nやaが一般の自然数なのでどうしたものかと考えています 数学的帰納法かなにかで求めるのでしょうか 大学の複素積分の講義で出題された課題なので, 留数定理などを利用するのではないかと思うのですが, だとしても分母が有理関数ではなく無理関数なので, 特異点での留数の値の求め方からすでに手が止まってしまいます 以上のような考察だけならできたのですが,そこから先に進めません 非常に一般的で有用な公式のようにも思えたので文献を漁りましたが, 調べ方が悪かったせいか,それらしきものは全く出てきませんでした 計算の一部始終を示していただけるならもちろん,そうでなくとも 何かヒントとなりそうな記事を教えていただけるだけでもありがたいです 初歩的な質問かもしれず恐縮ですが,よろしくおねがいいたします

みんなの回答

  • ZXikusa
  • ベストアンサー率0% (0/1)
回答No.2

1次元の場合なら分かります。 ご参考になさってください。

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

lim_{x→0}exp(i(k・x))=1 lim_{x→0}r^a=0 lim_{x→0}(exp(i(k・x))/r^a)=1/0=∞ だから 積分領域:R^n全体ならば ∫(exp(i(k・x))/r^a)dx=∞

関連するQ&A

  • フーリエ変換の問題(複素フーリエ級数)

    フーリエ変換の問題(複素フーリエ級数) 次の-L≦X≦Lで定義された関数f(x)を f(X+2nL)=f(x)により -∞<x<∞に拡張した周期関数の複素フーリエ級数展開を求めよ f(x)=0(-L≦X<0), 1(0≦X<L) ここで教えていただいたのですが、 恥ずかしながらあまり理解できなかったため、再度質問します 複素フーリエ係数が cn==∫【-L→L】f(x)*exp(-i n x)/2πdx この公式より cn=∫【-L→0】0*exp(-i n x)/2πdx +∫【0→L】1* exp(-i n x)dx コレであっていますか? なんだか単純なような・・・ 回答お願いします

  • 積分の変数変換について

    教科書で、”M⊂U⊂R^n (M,Uともに開集合)、F(x1,・・・,xn)はR^nのある微分方程式の積分でC^1級関数で、U上で∂F/∂x1≠0とする。また、Mと積分 F=τの交わりをMτとするとM=∪[α<τ<β]Mτとなる。これらより、陰関数定理からF=τをx1について解くことができて、 ∫M dx1dx2・・・dxn=∫[α,β]dτ{∫Mτ|J|dx2・・・dxn}となる。 (∫Mは開集合M上で積分するという意味、Jはヤコビアン)” と書かれているのですが、何故、右辺の積分範囲にMτが出てくるのかわかりません。Mτというのは元々(x1,・・・,xn)という座標系で表されていた集合なので、右辺の∫Mτ|J|dx2・・・dxnというのは、Mτに対応する(x2,・・・、xn)の集合Dτ上で積分しろという風に解釈すればいいのでしょうか? どなたかよろしくお願いします。

  • グリーン関数、フーリエ変換、複素積分について質問です。

    グリーン関数、フーリエ変換、複素積分について質問です。 非斉次波動方程式のグリーン関数を求める過程でフーリエ積分、 int[-∞、∞] e^iωt/(ω^2-(ck)^2) を求めるのですが計算の仕方が分かりません。 特異点を迂回するような経路をとって複素積分、留数の利用だと思うのですが、 考えられる4つの経路のどれで計算しても物理的要請の因果律(t<0でゼロ) を満たす解が得られません。 http://www4.atpages.jp/redmagic/appliedmathematics/green%27s%20function.pdf ↑のサイトを参考にしてみたのですが、私の計算では迂回した小半円での積分の 寄与が残ってしまいゼロになる解が出てきません。例えば参考サイトの11頁のx-x'<0 の場合を私は↓のpdfファイルのように計算したのですが参考サイトの場合のように http://cid-026bc8e4dd63562a.office.live.com/self.aspx/.Public/green.pdf ゼロになりませんでした。どこか計算か考え方が間違っているのでしょうが分かりません。 どこが間違っているのか教えていただきたいです。 また他の参考書には特異点を+ia(a>0)などとずらして経路から特異点を外して、複素積分の 後a→0の極限をとる方法も途中式なしでのっていたのですが、こちらを自分でやってみると 小半円は出てこないためゼロになる解を得ました。特異点をずらす方法も経路をずらす方法も 本質的には同じように思うのですが、答えが違ってしまうのはなぜでしょうか。それともやはり 私の計算が間違っているのでしょうか。 よろしくお願いいたします。

  • 複素積分

    f(x)=1/(2+cos(x))の複素フーリエ係数c_nを求める過程で、 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x))を計算したいのですが途中で行き詰まってしまったので指南のほどをお願いします。 ∫_[-π<x<π]exp(-nix)dx/(2+cos(x)) =∫_[0<x<2π]exp(-ni(x-π))/(2-cos(x))  積分範囲の変換 =2i∫_[周回積分]z^(-n)cos(nπ)dz/(z^2-4z+1)    z=exp(ix)と置いて置換 ここからnが奇数と偶数の場合に分けて計算しようと考えたのですが、どうしたらよいかわかりません。 よろしくお願いします。

  • フーリエ変換

    フーリエ変換について。 f(x)=e^(-x^2/2a^2)について。 A(k)=∫[-∞→∞]f(x)coskxdx B(k)=∫[-∞→∞]f(x)sinkxdx としたときフーリエ変換A(k),B(k)を求めよ。 またG(k)=∫[-∞→∞]f(x)e^(-ikx)dxとしたとき、G(x)も求めよ。という問題についてなんですが、G(k)=A(k)-iB(k)となることはすぐにわかります。 解答にはA(k)=√(2π)ae^{(-ak)^2/2} B(k)=0 G(k)=A(k)となっています。 ここでA(k),B(k)のみが答えにかかれていますが、なぜこのように導かれるのでしょうか? 非常に難しい式になるようですが、なぜこのように求められているのでしょうか? 積分範囲は-∞→∞と定義ではなっていますが、これは周期関数ではない場合での話ですよね。 すなわち一般関数において-∞→∞となるわけですが、このf(x)でも積分範囲は-∞→∞ですか?

  • 複素積分について

    複素積分について ∫[0,∞] 1/((x^4)+5(x^2)+4)dx ∫[0,2π] 1/(5+4cosθ)dθ 複素積分を利用して求めよ よろしくお願いします。

  • 複素積分

    複素積分を利用して以下の実積分を求めよ。    ∫[0→∞]cosax/(1+x^2)dx (a>0) この答えはπe^-a/2で正しいでしょうか?

  • 複素積分

    I1=∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxを複素積分を使って求めます。 まず ∫[-∞,-∞]cos(a*x)/(x^2+b^2)dxの被積分関数の分子にi*sin(a*x)を (iは虚数単位)を加えても加えた部分が奇関数でかわらないので加え ると ∫[-∞,-∞]{cos(a*x)+i*sin(a*x)}/(x^2+b^2)dxとなります するとI=∫[-∞,-∞]exp(i*a*x)/(x^2+b^2)dxです。 ここで複素積分 I=∫exp(i*a*z)/(z^2+b^2)dz (積分路は実軸と虚軸の正の部分を通る 反時計回りの半径Rの半円) またI2=∫exp(i*a*z)/(z^2+b^2)dz (積分路は虚軸の正の部分のみを通 る反時計回りの半径Rの半円)を考えるとRが十分大きいとき I=I1+I2・・・(1)になります。 Iは留数定理よりI=2*π*i*Res[f,i*b]=π*exp(-a*b)/b・・・(2) I2はz=R*exp(i*θ)とおき I2=∫[0,π]exp(i*a*R*exp(i*θ))/(R*exp(i*θ)^2+b^2)dθ =∫[0,π]exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)/(R^2*exp (2*i*θ)+b^2)dθ 三角不等式より 0<|I2|<∫[0,π]|exp(-a*R*sinθ+)*exp(i*a*R*cosθ)*i*R*exp(i*θ)|/|(R^2*exp(2*i*θ)+b^2)|dθ<π*R*exp(-a*R*sinθ)/|-R^2+b^2|・・・(3) ここでsinθ >0よりでexp(-a*R*sinθ)<1なので π*R*exp(-a*R*sinθ)/|-R^2+b^2|<π*R/|-R^2+b^2|となり π*R/|-R^2+b^2|はR-->∞で0なので結局 |I2|-->0   なので(1)より I1=π*exp(-a*b)/bが答えです。  これはわかるのですが、スタートで i*sin(a*x)ではなく-i*sin(a*x)を加えても変わらないですよね? そこで-i*sin(a*x)を加えて実際にやってみると (2)の部分はπ*exp(a*b)/bに変わってしまい、また (3)の部分はπ*R*exp(a*R*sinθ)/|-R^2+b^2|となってしまいこれでは R-->∞で発散するように思えます。 どこがまちがっているのでしょうか

  • 複素フーリエ、実数形

    ・次の関数の複素形フーリエ級数を求めなさい。実数形に直せ。  sin^3(x)  これの複素形フーリエは  sin^3(x)=(-1/8i)(exp(3ix)-3exp(ix)+3exp(-ix)-exp(-3ix) というのは分かったのですが、これを実数形に直したら、  sin^3(x)=(-1/4)(sin3x-3inx) になることがわかりません。アドバイスをお願いします。  それと、f(x)=0(-π<x<0),1(0≦x≦π) の複素形フーリエ級数の答えが、 f(x)=(1/2)+(1/πi)Σ(1/(2n-1){exp(i(2n-1)x)-exp(-i(2n-1)x) になるらしいのですが、  僕が計算した結果  (1/2)+(1/πi)Σ(1/2n)(1-(-1)^n) になりました。実数形はどうなるのでしょうか?  どうしたらよいかアドバイスをお願いします。

  • n次元の体積の求め方

    n次元ユークリッド空間で、   x1≧0, x2≧0,… xn≧0, x1+x2+…+xn ≦ a (aは正定数) を満たす領域の体積を考えます。私はこれを   ∫(0~a)dxn∫(0~a - xn)dxn-1 …∫(0~a -(xn+…+x2))dx1  =∫(0~a)dxn∫(0~a - xn)dxn-1 …∫(0~a -(xn+…+x3))dx2(a -(xn+…+x2))  =…  =a^n/n! として求めました。(http://oshiete1.goo.ne.jp/kotaeru.php3?q=1057646参照) n=2, 3 の場合にこれが正しいことは容易に確かめられます。自分の回答のことで無責任ですが、一般のnの場合になぜこのような積分で体積が求められるのでしょうか。また、被積分関数が1でないなら積分も必要と思いますが、被積分関数が1の場合は単なる体積です。積分を使わずにこの体積を幾何学的に直感的に説明する方法はないのでしょうか。