• 締切済み

背理法と対偶証明の違いについて

B-jugglerの回答

  • B-juggler
  • ベストアンサー率30% (488/1596)
回答No.24

全く違うアプローチになるかもしれません。 今日の今日(日付が変わっているので、昨日ですね^^)、 珍しく、学生君たちと話す機会がもてまして。 めったにないんですよ。私は非常勤ですし、今の時期って学生もいませんし。  #教授ならあるのでしょうが。  #私は流れ者でしかないので・・・。 数学者になるであろう連中と話していた結果を、つらつらと・・。 やはり「論理学」の分野は、数学だけではないですね。 図書館で (例の式)を捜してみたのですが、やはりないです。 哲学のところに、「論理学」ってあったんですよ。 こっちのほうが、はるかに詳しく載っているんですよね。 数学で使う論理って、集合論の包含関係などがほとんどなんですね。 よくよく考えて、話をしてみて、 「命題に対して、背理法を使っていない」 って、気が付きました。 素数の無限性で 命題を作らないですね、そういえば。 「素数は無限にありますよ」って、定義を持ってくる。 これを正しいかどうか判断するのに、 「素数は無限にありませんよ」として、下記の方法で 新たに素数が出来る。 これで持って、定義の否定と違うことがでた! だったら、定義したことが正しいんだ。 のようなやり方ですね。 学生君に指摘されて、自分でもびっくりしました。  #自分では気がつかないもんですね。 素数は無限 というのはいえます。 自然数と同じように、最大数に+1をしていけば新しい自然数は作れますから。 これと同じとしていい事になっています。  #実際には全く同じです。 定理みたいなものとして扱っていいのでしょうね。 単位要素などと同じように。 ~~~ ●(2)式が素数の式なら良いのですが、Mn=37でもM=1407=201×7になります。 ここでの私の疑問の肝は、「どんな大きな数に対しても、それ以下の全ての素数を漏れなく選び出して掛け算できる」と言う事は、仮定するしかない。のてはと言う意味です。 とすれば無限に多くの素数がある事と同じだという意味です。背理法は不要です。 ~~~ この疑問はよく上がるんですよ。 相当に次元の高い疑問が出てきますね。  #理系のTOPクラスの疑問ですよ。 説明するのは難しいのですが。 一個一個、噛み潰すしかないですね。 簡単にいくと、 前にも書いていることですが、 >2×3×5×7×・・・×Nn=Mnの次の素数をこの式で考えると・・・ Mn+1(=M) が素数になり、Nn<Mですよね。 ただ、この間に素数がありますから(ごく小さい二つのケース以外)、 これがNnの次の素数とはいえないですね。 このMっていう素数は、無限を導き出すために作ってきただけの素数なんですよ。 これも裏業みたいな言い方になりますが、 Nnの次の素数を、見つけ出して、それを最大として、 また素数を作ります。(見つかった素数)>Mですね。 またその次を捜すんです。 また素数を作る。 繰り返すことで、Mより大きい素数がどんどん出て来ます。 地味~~な作業ですが、あるときに、次の素数はMだ!って瞬間が来るんですね。 ここで引っかかる可能性があるんです。 Mの式がでていますから、引っかかりやすいのですが、 実は大丈夫で、一つずつ増えていった素数の集合ですから、 >2×3×5×7×・・・×Nn×(Mn +1)+1=Mn×Mm +1=M この式にならないんですね。 おそらく、 2×3×5×7×・・・×Nn×・・・・×M +1 =Pm  #Pmは 最大の素数Mから得られる、素数。 こうなるはずなんですね。 仮定でもありますが、一個一個噛み潰していけるという確証も持てます。 難しくなりすぎますねぇ^^;  #ここはそれだけ高度なんですよ。 ~~~~ ●そもそも素数の定義を含むA={素数Ns}の定義は、自然数の集合をNとして、 A={Ns:n,Ns∈N∧∀n(n<Ns)⇒¬(Ns/n∈N))}とでもするのが厳密でしょうか。 ~~~~ 任意の1以外の自然数に対して、割り切れない(自分自身を除く) n=1のとき右辺がまずいですか。 左辺を (n<Ns+1) 右辺を (Ns/(n+1)) こうしましょうか。 これだと、n=2から割っていって、Ns=n+1にはなりませんね。 本筋に戻しますが、 「論理命題についての背理法」は数学ではあまり扱わない のではないか? っていう風に、話はまとまってしまいました。 記号もちょっと違いますね。 三本線のイコール ≡ これ 恒等的に等しい とします。 同値は ⇔ こっちなんですよね。 論理学の本では、⇔と≡ とが 違っていたりするようです。 例の式 Ψとか、φの式は、おそらく論理学専門なのかなぁ? と思ってみたりしました。

skoyan
質問者

お礼

●前の式は間違っていたようです。下記が正しいでしょうか。ご検討を。 >そもそも素数の定義を含むA={素数Ns}の定義は、自然数の集合をNとして、 ・・・・・ ●A={Ns:1≠Ns∈N, 1≠n∈N∧∀Ns[∀n((n<Ns)⇒¬∃n(Ns/n∈N))}とするのが厳密でしょうか。 こうすればNsは1と自分自身意外で割れない数だけの集合になります。 ●1≠Ns∈N なる自然数Nsが、n<Nsのnの(1を除く)全てについて、Ns/n∈Nが存在しない(自然数にならない、つまり割り切れない)場合に、この集合Aの要素になります。 ・・・という意味での作成です。 **素数の数学的定義か在るのか、どうかは知りませんが・・・。 ●これが正しければ、ことさら背理法などを使わなくてもNs∈Nを次々に選ぶので、無限集合だと出てきそうです。素数のアルゴリズムは知りませんが、2から順次増やして行き元の数以下の自然数で割って、剰余が0になるものを除けば素数は出そうです。・・・とすれば単純な計算で、処理時間はともかく原理的には簡単な計算で次々求められます。 ●背理法の式? との信奉者がいる、((A⇒¬B)∧(A⇒B))⇒¬A 、¬(A⇒¬B)⇒(A⇒B)などは論理回路で実現すると、( )の外側の⇒の部分は論理和回路に対応し、最終出力は( )内の回路からの信号伝達とは無関係になります。つまり物理的にもトートロジーは因果関係がなくなります。と言う事は、トートロジーが論理的な真理を表す筈がない事になります。 この話は、旧友との議論中に思いつきました。計算機回路設計は仕事でした事も有りますので。一般的ではなくなりますが。 ●(¬A⇒¬B)⇒(A⇒B)などは (A⇒B)⇒(¬A⇒¬B)でもあり⇔とも書けますし、真理値表から言えば同値として≡とも書くのは著者にもよります。同値な⇔は回路も⇔の左右同一になります。

skoyan
質問者

補足

前回の最終行ミスです・・・ ××●(¬A⇒¬B)⇒(A⇒B)などは (A⇒B)⇒(¬A⇒¬B)でもあり⇔とも書けますし、真理値表から言えば同値として≡とも書くのは著者にもよります。同値な⇔は回路も⇔の左右同一になります。 ●(¬B⇒¬A)⇒(A⇒B)などは (A⇒B)⇒(¬B⇒¬A)でもあり・・・が正しいのです。 ●≡は真理値表から見た場合に同じに扱える場合に使い、著者によります。これは結局どちらも同じになります。 (1)¬(A⇒¬B)⇒(A⇒B)≡Tは(2)¬(A⇒¬B)⇒(B⇒A)≡Tも成立し、(A⇒B)と(B⇒A)のいわゆる≡でも⇔でもない、所謂逆命題が同一の前提¬(A⇒¬B)から出てくるという事を示しても、かたくなに信じている人がいます。是非こんなアホ学生を作らないでください。 ●旧友(数論が趣味で、憲法9条の会員)と議論の末に物別れになったのも、憲法論議で『どこかの国の紛争が日本にも及ぶ可能性がある』と言う私の主張に対して、お前の論理は『背理法』で云々から始まり、「では反対するなら、それと同値な、『すべての国際紛争は日本に無関係だ』を証明できるのか・・・」となり、記号論理的な議論にまでなりました。一見現世には無関係に見える論理学も、このように社会問題等の異見に現れるものですから・・・。

関連するQ&A

  • 対偶を示して証明する背理法について

    対偶証明法も背理法の一種と考えることが出来る。 という考え方があるのですが それで、その理由について 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。 命題を背理法で証明するために「pならばq」を否定して「pかつ¬q」。 証明されている「¬qならば¬p」はpではないので 「pかつ¬p」となり矛盾。 背理法が成立して「pならばq」は真となる。 対偶法なら 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。」の段階で自動的に命題が真といっていい。」 という説明があるのですが 自分は 対偶証明法は 対偶を示して証明する形式の背理法と 「対偶を示して証明する」という流れが同じなので 対偶証明法も 見方によって 「対偶を示して証明する形式の背理法」と考える事が出来るので そういう意味で 「対偶証明法も背理法の一種と考えることが出来る」 ということになる、と 理解したのですが この考え方は間違っているのでしょうか?

  • 対偶法も背理法の一種という考え方について

    あるテキストの「対偶法も背理法の一種として考えることが出来る」ということについての説明で 命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。 「pならばq」を背理法で証明するために「pならば q」を否定して「pかつ¬q」。 証明されている「¬qならば¬p」はpではないので 「pかつ¬p」となり矛盾。 背理法が成立して「pならばq」は真。 対偶法なら 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。」の段階で自動的に命題が真といっていい。 という説明があるのですが なぜこれが「対偶法も背理法の一種として考えることが出来る」ということになるのか理解できず 出版社に問い合わせたところ 「対偶が成り立つので、矛盾が生じ、背理法が成立する。 よって、元の命題が成立する」 ということのようなのですがいまいち理解が出来ません。 私の考えでは、 対偶法による証明法の場合、対偶が証明された時点で自動的に命題は真である、と考えますが 対偶をつかって背理法によって命題が真であることを証明できるので 対偶が証明されたあと、自動的に命題が真であるということではなく 背理法によって命題が真であると言っているということが出来るので 対偶による証明法も一種の背理法と考えることができる ということだと思ったのですが、出版社の説明と私の考えはどのあたりが違うのでしょうか? 私はあまり数学が得意ではなく、これも数Iのレベルのものなので そんな私でも理解できるように説明していただけると助かります。 よろしくお願いします。 この質問とは違うのですが、これら関する質問を以前ここでさせてもらい、参考にさせてもらいました。 その時回答をしてくださった方ありがとうございました。

  • 対偶命題 背理法 違い

    背理法を使って証明するときと対偶命題を使って証明するときとの違いはなんですか?

  • 背理法と対偶法の関係について

    自分の使っているテキストに 対偶法も一種の背理法と考えることが出来る。 命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。 命題を背理法で証明するために「pならばq」を否定して「pかつ¬q」。 証明されている「¬qならば¬p」はpではないので 「pかつ¬p」となり矛盾。 背理法が成立して「pならばq」は真となる。 対偶法なら 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。」の段階で自動的に命題が真といっていい。 という事が書かれており これは 「対偶法の考え方でみると「対偶が真」と証明された時点で、自動的に命題が真であると考えますが 対偶法の「対偶が証明されると、元の命題が真になる」 という流れが自動的にではなく背理法によって証明されている、と考えることが出来るので 対偶法は背理法であると考えることが出来て 「対偶法は一種の背理法と考えることが出来る」ということになる」 ということが書いてあるということで理解できました。 しかし、なぜ「一種の」と書かれているのか気になっています。 そこはあまり深く考えなくてもいいと別の場では言われたのですが、ここがわからないと理解できた気がせず、どうしても気になってしまい悩んでいます。 自分が考えているのは 対偶法を背理法として考えた場合、 それは「 背理法の中の対偶を示して証明する形式のもの」 を表している。 しかし背理法は対偶以外を示して証明することも出来るので 「背理法の何個かある証明の形式のうちの一つと同じと考えることが出来る」という意味で 「一種の背理法」という表現がされている ということかと考えています。 この考え方で間違っていることはあるでしょうか? どうかよろしくお願いします。

  • 対偶による証明法と背理法による証明について

    数学Iの内容なのですが自分の使っている参考書に 対偶による証明法も一種の背理法と考えることが出来る。 命題p⇒qが真であることをいうために¬qと仮定して¬pが導かれたとする。 pではないからこれは矛盾で背理法が成立したことになる。 でも¬q⇒¬pとは文字通りこれは対偶のことで、これが真と言えたから 自動的に元の命題が真といってもいい と書いてあるのですが、色々な所で質問してみたのですが どうしてもあまり理解ができません。 (1)命題p⇒qが真であることをいうために¬qと仮定して¬pが導かれたとする 導かれた形は¬q⇒¬p 背理法の仮定の形では¬q⇒p (2)pではないからこれは矛盾で背理法が成立したことになる この導かれた形が¬q⇒¬pで命題の対偶の形をしていて それによっても命題が真であることが示されているから 対偶による証明法も一種の背理法と考えることが出来る、と書かれているのでしょうか?

  • 背理法と対偶法について

    少し長くなるのですがお願いします。 私の使用している参考書に 「対偶による証明法も一種の背理法と考えることができる。 命題p→qが真であることをいうために¬q(qでない)と仮定して¬pが導かれたとする。 pではないからこれは矛盾で背理法が成立したことになる。 でも¬qならば¬pとは文字通り、これは対偶のことでこの対偶が真といえたから自動的に命題が真といってもいい」 と書かれていて この部分の意味がわからなかったので出版社に問い合わせました。 すると、このような回答を頂きました。 -------------------------------------------------------------------- 背理法は、 「pという前提条件下で、結論のqを否定して、¬qと仮定すると、矛盾が生じる。よって、p⇒q」とする論法ですね。対偶法において、この矛盾に相当するものが、 「¬pかつp」という矛盾です。なぜなら、¬q⇒¬pを示すのが対偶法だからです。 つまり、対偶:¬q⇒¬pが示されれば、この時点で「¬pかつp」という矛盾が生まれ、背理法が成立したことになります。 -------------------------------------------------------------------- 私は以前、この事に関する質問をここでして回答をいただいたのですが その時に頂いた回答をもとに考えたのがこの考え方です。 ---------------------------------------------------------------------- 「pならばq」を証明しようとしていて 「pならばq」に背理法を使って「pであって¬q」と仮定する。 その過程で「対偶 ¬qならば¬p」が証明できたとする。 「pであって¬q」と仮定しているのに対偶 ¬qならば¬p なので pではないため矛盾する。  よって「pならばq」は真である。 命題の対偶が証明された場合、普通は自動的に命題が真であると考えますが この説明文では 「命題の対偶が証明されたあと、背理法を使って命題が真であることを証明することになるので 対偶による証明法も一種の背理法と考えることが出来る」 ということが書かれている。 -------------------------------------------------------------------------- 出版社から頂いた回答と、この自分の考えが 合っているのか自信がもてません。 出版社にはこの事以外にも色々質問していて、何度もメールしづらいのでここで質問させてもらいました。 よろしくお願いします。 

  • 背理法による証明と対偶による証明法について

    自分の使っている参考書に 「対偶による証明法も一種の背理法と考えることができる。 命題p→qが真であることをいうために ̄q(qでない)と仮定して ̄pが導かれたとする。 pではないからこれは矛盾で背理法が成立したことになる。 でも ̄qならば ̄pとは文字通り、これは対偶のことでこの対偶が真といえたから自動的に命題が真といってもいい」 と書かれているのですがいまいち意味がわかりません。 どういうことなのでしょうか? 数1の内容なのですがあまり数学が得意ではないので簡単に教えていただけると助かります よろしくお願いします。

  •  背理法とは対偶がその原理だと私は思っています。つまり対偶と背理法は基

     背理法とは対偶がその原理だと私は思っています。つまり対偶と背理法は基本的に同一と言う説です。  ところが違うと言う方が多いようで、その原理式は((A⇒¬B)∧(A⇒B))⇒¬Aだというのです。 その意味がわかる方は詳しく説明してください。私はこの式は間違いと思います。

  • 数学A 対偶と背理法

    命題が真であることを証明するのに、どういう場合に対偶を用いて証明し、どういう場合に背理法を用いて証明すればいいのか分かりません。 どなたか、教えてください。

  • 背理法とは?

    背理法について混乱してしまってるので解説をお願いします。 背理法とは命題を否定したものが成り立たないことを証明するのですよね? ここで疑問なのが逆・対偶・裏から見る命題を否定した裏は命題との真偽が同じになることもありますよね? それでも証明できるのは背理法と命題・逆・対偶・裏は話が別物で関係ないということですか?