• ベストアンサー

整式P'(x)=(x-α)Q(x)の積分

「P(x)を整式とした時、P'(x)が(x-α)で割り切れれば P(x)={(x-α)^2}q(x)+c となる。(cは定数)」 ことについて 整式P'(x)=(x-α)Q(x) を積分することによっても P(x)={(x-α)^2}q(x)+c となることを導けるはずだと思うのですが、 これがうまくできずに困っております。 P(x)=∫P'(x)dx=∫(x-α)Q(x)dx=1/2{(x-α)^2}Q(x)                  ー∫1/2{(x-α)^2}q(x)dx+c  =・・・・ 2項目「∫1/2{(x-α)^2}q(x)dx」が{(x-α)^2}で割り切れれば解決なのですが、この先どうすればよいでしょうか? よろしくお願い致します。

  • vigo24
  • お礼率87% (859/977)

質問者が選んだベストアンサー

  • ベストアンサー
  • htms42
  • ベストアンサー率47% (1120/2361)
回答No.2

>P(x)=∫P'(x)dx=∫(x-α)Q(x)dx =1/2{(x-α)^2}Q(x)-∫1/2{(x-α)^2}q(x)dx + c Q(x)とq(x)の関係は? P(x)=∫P'(x)dx=∫(x-α)Q(x)dx =1/2{(x-α)^2}Q(x)-∫1/2{(x-α)^2}Q'(x)dx です。(+cは省略しました。) P(x)が整式でしたからQ(x)も整式です。 P(x)の次数をnとするとQ(x)の次数はn-1です。 Q'(x)はQ(x)より1つ次数が低いです。 これを繰り返します。 ∫1/2{(x-α)^2}Q'(x)dx  =(1/6)(x-α)^3Q'(x)-(1/6)∫(x-α)^3Q''(x)dx 部分積分を(n-1)回繰り返すとQ(x)の(n-1)回微分が定数になります。 これで証明ができます。

vigo24
質問者

お礼

大変詳しいご回答どうもありがとうございます! スッキリ解決しました!

その他の回答 (1)

  • koko_u_u
  • ベストアンサー率18% (216/1139)
回答No.1

>P(x)={(x-α)^2}q(x)+c となることを導けるはずだと思うのですが、 全然考えてないので、私にはできるかわかりませんが >「∫1/2{(x-α)^2}q(x)dx」が{(x-α)^2}で割り切れれば 1つめの式に出てくる x と、2つめの式に出てくる x の意味が違うので 積分を定積分にして考えるべきでしょう。

vigo24
質問者

補足

ご回答どうもありがとうございます。 積分に関しては部分積分の公式をそのまま使っただけのつもりですが、 おかしいでしょうか? 1つ目:1/2{(x-α)^2}Q(x) 2つ目:ー∫1/2{(x-α)^2}q(x)dx のことでしょうか? 定積分を使うとはどのようにするのかもう少し説明していただけるとありがたいです。

関連するQ&A

  • 【問題】xの整式Pをx^3-1で割ると商がx+3であり、x+1で割ると

    【問題】xの整式Pをx^3-1で割ると商がx+3であり、x+1で割ると余りが5、x^2+x+1で割ると余りが-7x-1となる。ことのき、Pをx^2で割った時の余りを答えよ。 ≪自分の解答≫ P(x)=(x^3-1)(x+3)+ax^2+bx+c P(x)=(x+1)*Q(x)+5 P(x)=(x^2+x+1)*R(x)+-7x-1 P(x)=x^2*S(x)+px+q と置いてみたのですが…これからどうすればいいのでしょうか??^-^; よろしくお願いします。。。

  • 一般にP,Qがxについてのn次式以下の整式であると

    一般にP,Qがxについてのn次式以下の整式であるとき、等式P=Qがn+1個の異なるxの値に対して成り立つならば、こも等式はxについて恒等式である。 とありますが、この命題はなぜ成り立つのでしょうか?

  • ☆積分積分積分積分積分☆

    ☆積分積分積分積分積分☆ この問題をできるだけ分かりやすく丁寧に教えて下さい、お願いします。 次の条件を満たすXの三次の多項式P(X)を求めよ。 (1)任意の二次以下の多項式Q(X)に対し、∫〈1、ー1〉P(X)Q(X)dX=0 (2)P(1)=1

  • 微分積分について

    微分積分初心者です。 dy/dx=5という微分方程式があって、これの両辺をxで積分すると ∫dy/dx・dx=∫5dx y=5x + C(Cは積分定数)というのはわかるのですが、 dxを右辺に持って行って、 dy=5dxとして両辺を積分する時は、左辺をyで積分、右辺をxで 積分ということになるのでしょうか? こういうことは可能なのでしょうか? また一階微分の時は右辺にdxを持っていくことができますが、 二階微分以上ではできないのはなぜでしょうか? よろしくお願い致します。

  • 広義積分の問題を教えて下さい

    次の問題の答えを教えて下さい。 1.次の広義積分を求めよ。ただし、r,kは正の定数とする。 (a)∫(rから∞)dx/x^2 (b)∫(0からr)dx/√r-x (c)∫(-∞から0)e^(kx)dx (d)∫(0から1)dx/x^2の三乗根 (e)∫(1から∞)dx/x(1+x) (f)∫(0から1)√(x/1-x)dx 2.次の広義積分を求めよ。 (a)∫(-1から1)dx/x (b)∫(-1から1)dx/x^2 (c)∫(-∞から∞)dx/x^2+1 3.広義積分I=∫(0からπ/2)log(sinx)dxの値を、次のようにして求めよ。 (a) I=∫(π/2からπ)log(sinx)dx=∫(0からπ/2)log(cosx)dxが成り立つことを示せ。 (b)x=2tとおいて2I=∫(0からπ)log(sinx)dxの値を計算することによって、I=-(π/2)log2であることを示せ。 4.s>0として、ガンマ巻数Γ(s)=∫(0から∞)e^(-x)x^(s-1)dxについて式Γ(s+1)=sΓ(s)が成り立つことを示せ。 5.p>0,q>0として、ベータ関数Β(p,q)=∫(0から1)x^(p-1)(1-x)^(q-1)dxについて式Β(p,q)が成り立つことを示せ。 お願いします。

  • 変数分離法で積分するときの積分変数について質問です。

    変数分離法で積分するときの積分変数について質問です。 例えば、dy/dx=yという式を変数分離法で解く時、両辺にdxをかけて、両辺をyで割って、1/ydy=dxという形にして両辺を積分します。このとき、教科書を見ると「∫1/ydy=∫dx+C」となっており、積分定数がついています。 積分の定義は「∫f(x)=F(x)+C」のように、積分を行ったものに積分定数がつくと習いました。しかし、変数分離の式「∫1/ydy=∫dx+C」では積分を行う前に積分定数がついています。これはなぜなのでしょうか?どなたかわかる方がいらっしゃいましたら教えてください。

  • P(x)と{P(x)}^2

    【Q(x)を2次式とする。整式P(x)はQ(x)では割り切れないが、{P(x)}^2はQ(x)で割り切れるという。このとき、2次方程式Q(x)=0は重解を持つことを示せ。】 という問題なのですが、 【P(x)をQ(x)で割ったときの商をA(x),余りをpx+qとおいてpx+q≠0………(i) 余りは0でないのでp,qの少なくとも一方は0でない。 P(x)=Q(x)A(x)+px+q {P(x)}^2={Q(x)A(x)}^2+2Q(x)A(x)(px+q)+(px+q)^2 ここで、{P(x)}^2はQ(x)で割り切れるので(px+q)^2はQ(x)で割り切れる。 よって(px+q)^2はkQ(x)(kは定数)と表せる。 (I)K=0のとき、px+q=0となり、(i)に反する。 (II)K≠0のとき、Q(x)=(px+q)^2/k よって、Q(x)=0となるのはpx+q=0のとき・・・】 とやったらpx+q=0となってしまいまた(i)に反するような気がします。 どこか間違っているのだと思うのですがどこが間違っているのでしょうか? どうぞよろしくお願いします。

  • 積分のある公式について

    ∫1 / (x^2 + y^2) dx = log (x + (x^2 + y^2)^1/2 ) + C [Cは積分定数] という公式がありますが、 ∫1/ (x^2 + y^2 ) dx = (x^2 + y^2)^(1 - 1/2) * x^(1 + 2) /1 + 2 + C = (x^2 + y^2)^1/2 * x^3 / 3 + C [Cは積分定数] はいけないのでしょうか。 理由を詳しく教えていただければうれしいです。

  • dx/dt=αxの積分

    dx/dt=αxの両辺を積分するという問題が解りません。 答えはx(t)=x(t=0)*exp(αt)です。 右辺はInαx=1/2αx^2+Cになると思ったのですが、間違っているようです。 t=0のときx=C(積分定数)になる意外わかりません。 どうしたらよいのでしょうか?

  • 積分の答えについて

    ∫(3x-5)/(x-2)dxの答え方なのですが、3(x-2)+log|x-2|+C C:積分定数とするか3(x-2)を展開して6も積分定数に含め3x+log|x-2|+Cとするのかで迷っています。 どちらの答えでもない可能性もありますが... 回答よろしくお願いします。