• 締切済み

ゲーデルによれば、無限を前提にしないと数の整合性/無矛盾性が保てない?

ゲーデルによれば、無限を前提にしないと数の整合性/無矛盾性が保てないと言えるのでしょうか?

みんなの回答

  • rinkun
  • ベストアンサー率44% (706/1571)
回答No.1

逆になぜ質問のような考えに辿りついたかの説明を求めたいところですが…… ゲーデルによらずとも、数の全体を考えれば自然に無限がでてくると思います。 ゲーデルの不完全性定理などはむしろ、数のような無限対象では無矛盾性を証明することは不可能だと言っていると思いますが。

elegantia
質問者

補足

コメントをありがとうございます。ゲーデルが、「自己の無矛盾性を証明できない、自然数を包括する公理体系」というのは、有限finitary体系ではないのでしょうか? 確かに、自然数を無限に包括することの無限性はありますが、その一方で、自然数である限りの有限的様態もつきまとっていますよね?

関連するQ&A

  • 「整合性がとれてない」=「矛盾している」と言う意味

    「整合性がとれてない」=「矛盾している」と言う意味でしょうか? とある人に「お前の話は整合性がとれてない」と言われたのですが よく意味がわかりませんでした。 「矛盾している」と言う意味でしょうか? よろしくお願い致します。

  • 1の中に無限の数は存在する?しない?

    1の中に無限の数が存在するのか?しないのか? ということを考えるため 1÷無限=? つまり、1を無限で割り算することを考えます、つまり1を無限に割り続けるということです。 すると次の二つの推論にたどりつきました。 しかし、どちらも正しいと思える次の、(1)の主張と(2)の主張は矛盾してしまうのです。 (1)1を無限で割り算することを考えますが、割り算という演算の性質上、仮にも無限の演算が完了しようと、しなかろうと、0になることは絶対にないと推論できます(0.0000000………とゼロが無限に続き、ほぼゼロと言えますが最後尾の数はどんなに小さかろうと、大きさを持つので絶対にゼロではありませんので、完璧な『0』ではありません、完璧な『0』でない以上は大きさを持つ数ですので割り算が無限に可能です)。 ということは、1を無限で無限に割り続けても0になることはないと保証されているので、無限に割り続けることが可能になります、 よって、1の中には無限の数が存在できると言えます。 (2)割り算という演算の性質上、無限の演算が仮にも完了しようと、しなかろうと、0になることは絶対ないと推論できます。 ということは、1を無限で無限に割り続けても0になることはありません、無限の演算が完了できなくとも絶対に0にならないのは既に決まっています、1を無限に割り続けてどんなに小さな小さな数になろうと、完全に0にならない以上は、1の中に無限に入ることの出来る数は存在しないと言えます。 上記の(1)と(2)をまとめますと、 (1)は、割り算を無限に続けても、割り算の性質上は0になって割り算が終わることがないので、1を無限に割り続けることが可能なので、1の中に無限の数が存在出来るという主張です。 (2)は、割り算を無限に続けても、割り算の性質上は0になって割り算が終わることがないので、つまり、1を無限に割り続けても0にならないということは、無限に割り続けた数がどんなに小さくとも、0でないので、大きさを持つので、大きさをもつ限りは、1の中に無限に入ることができる数は存在しないという主張です。 (1)は、1の中に無限の数が存在すると主張しますが、 (2)は、1の中に無限に入ることの出来る数は存在しないと主張します。 つまり、(1)と(2)どちらも正しい主張が両立できず矛盾してしまうのです。 1の中に無限の数は存在出来るのか、出来ないのかどちらが正しいのでしょうか?

  • ゲーデル数と自然数の有限列について

     ピンポイントな質問で申し訳ないのですが、もし答えられる方がいらっしゃればお願いします。  田中一之著「ゲーデルに挑む」の原論文第一節 p29に論理式は自然数の有限列で表されるとあって、その下の脚注8に「この有限列というは自然数の始切片で定義される数論的関数であって数が隙間を空けて並んでいるのではない」とありますが、ただ数が隙間を空けているものとすると、どのようにまずいのでしょうか(扱いにくくなってとても不便ことはわかりますが)。  このあとにゲーデル数を実際導入する際は素数を使って定義していますが、これは「自然数の始切片で定義される数論的関数」となっているのでしょうか(数論的関数なるものがどういうものなのかがよくわかっていないのです)。  またゲーデルが行ったのは、ある種の自然数がある性質をもつかどうか調べることが、体系内である論理式が証明できるかどうかを調べることになるということを、正確に定式化することだと考えているのですが、 前者の自然数の性質がどういった内容をあらわすか、つまりある自然数がどの論理式の証明可能性をあらわしているかは、数学は教えてくれず(解釈自体は体系内で行われることでなく)、人間が解釈を行う必要があるということでしょうか(もちろんゲーデル数の性質と記号変形としての証明の手順の間には対応があるので恣意的に解釈することは全く不可能ですが)。 変な質問になってしまって、恐縮ですが、お詳しい方お時間あればよろしくお願いします。

  • 素数は無限に存在する ことの証明について

    素数が無限に存在することを証明する際に、最大の素数の存在を仮定し、そこから背理法で最大の素数までに存在する全ての素数を掛け合わせてそれに一を足したものについてそれをZとすると 1、Zが素数なら矛盾 2、Zが合成数だとすると、最大の素数までに存在する素数では割り切れないので、Zは最大の素数より大きい素数でわりきれることになりこれは矛盾である したがって、素数は無限にある という証明法がありますが、2は必要なことなのでしょうか? 理屈として必要なのはわかりますが、 Zはそもそも素数なのではないかということです。 といいますのも、例えば小さい数で、2×3+1=7は素数、2×3×5+1=31は素数、2×3×5×7+1=211も素数ということを考えた時、もしかしたら小さい方の素数から連続して掛け合わせた場合には、素数に絶対になるのではないかとおもったからなのですが、そんなことはないのでしょうか?

  • 数学の無矛盾性とはどんなものですか?

    そりゃ、公理系が矛盾を一つも証明しないことに決まっていますけど、いったいどんな感じになったら「数学の無矛盾性を証明した」になるんですか、教えてください! やっぱりゲーデル命題を使って論証するんでしょうか?

  • 1÷無限=0ということは数(大きさ)は幻想?

    1÷無限=0ということは、 つまり、1の中に無限に入るのは0しかないので、1は無限の0の集まりで出来ていることになります(また、1以外のどんなに大きな数でも無限で割れば0になり例外はありません)、つまり、どんな数であっても無限で割れば、数を『構成する最小数』は0ということになります、つまり、どんな数も0が集まって(足し合わせて)出来ていることになります。 しかし、『0』はいくら足し合わせても掛け合わせても1にはなりません(大きさを持ちませんし、どんな数にもなりません)、 とすると、唯一0だけは存在しても、数(大きさ)なんてものは本当は存在しないものなのでしょうか?

  • ゲーデルの不完全性定理

    ゲーデルの不完全性定理の証明のアイデアが知りたいと思い、適当な入門書(基礎論の教科書ではないです。)を読んでいるのですが、 まず、定理の主張が「形式的体系Tで通常の自然数を含み、強い意味で無矛盾であり、そこにおける公理や推論規則は帰納的に定義されているかまたはその数が有限であるようなもの、においては文GでGも¬Gも証明できないものが存在する。」 とあるのですが、形式的体系Tがなにを意味しているのかがよくわかりません。これは、形式的と書いてあるのだから文字通り「意味を考えない記号の世界(記号の集まりと、記号を並べて得られる列を変形するいくつかの規則)」と考えればよいのでしょうか? それで、もう一つ質問があるのですが、 まず、準備として記号 ¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zを用意して、 x,y,zを変数記号と呼びます。 それで、項を次のように定義します。 (i) 0,x,y,zは項。 (ii) t,sが項であるとき、'(t),+(t,s),×(t,s)は項。 (iii)このようにして得られるものだけが項。 (iV)'(t),+(t,s),×(t,s)を簡単にそれぞれt',t+s,t×sと記したりする。また、0',0'',0''',…をそれぞれ1,2,3,…と記す。 また、項tを上の記号の括弧としてではなく、見易さのための補助記号としての(,)を用いることにより、しばしばt(x,y,z)と記したりする。 次に論理式を次のように定義します。 (i)t,sが項のとき、t=sは論理式。 (ii)φとψが論理式でxが変数記号のとき、(¬φ),(φ∧ψ),(φ∨ψ),(φ→ψ),(∀xφ),(∃xφ)は論理式。 (iii)このようにして得られるもののみが論理式 (iV)見易さのために括弧を適当に省略して論理式を記すこともある。 以上により、与えられた記号列が項か論理式かそれ以外のものか判定できるようになります。 準備した記号¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zを普通に解釈することで、論理式の意味を考えることができるようになります。 ただし、'は後者関数と解釈します。 次に、¬,∧,∨,→,∃,∀,(,),0,',+,×,=,x,y,zに 素数2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53を割り当てます。 記号列が与えられたとき、各記号を上記の対応に従い素数n_1,n_2,n_3,…に置き換え、2^(n_1)*3^(n_2)*5^(n_3)*…を対応させます。対応する数をゲーデル数と呼びます。 以上で準備は終わりで、 質問ができるのですが、 「mがTのある論理式のゲーデル数である」という非形式的な主張は mを素因数分解して各素数の指数を調べることである論理式のゲーデル数であるかどうかがチェックできるので、解釈すると「mがTのある論理式のゲーデル数である」という意味になる論理式が作れる、とあるのですが"具体的"にはどのようにして作るのでしょうか? 私は、論理式の定義が再起的であるから、「mがTのある論理式のゲーデル数であるかどうか」をコンピュータに判定させること(とてつもなく時間がかかりそうですが)可能だと思うので上のような論理式は作れると思うのですが、実際に作るとどんな論理式になるのか興味があります。

  • ゲーデルの不完全性定理について

    ゲーデルの不完全性定理について ネットサーフィンをしていたときに、たまたま、ゲーデルの項目を見つけました。 当方、数学は素人なのですが、 ゲーデルの不完全性定理(ある公理系の中には、真偽を明確にできない命題が存在する) を僕たちが生きるこの世界、この宇宙にあてはめて考えると、 この世の中には、論理的には正しいとも間違っているとも証明できないことがらがあるということなのでしょうか。

  • 素数の分類と無限性に関して。

    素数の分類と無限性に関して。 ※^は乗数の意味です。 8n+1型の素数が無限に存在することの証明 原始根の存在(素数 p を法とする整数環 Z/pZ の乗法群が位数 p - 1 の巡回群であること)を使う。 x を整数とする時x^4 + 1 の奇素数因子を p とする。 x^4 ≡ - 1 (mod. p) より、両辺を2乗することでx^8≡1となる。 x の p を法とする整数環 Z/pZ の乗法群での位数は 8 で有るから、 p ≡ 1 (mod. 8) となる。ここで、 p ≡ 1 (mod. 8) となる素数が有限個であったとする時、その総乗積を P として、 (2P)^4 + 1 の奇素数因子を考えると矛盾が出る。 私は2PをX"とおいて上と同様に考えました。 この証明の流れや、8n+1型の素数が無限に存在することは理解できるのですが、上の証明における「位数は 8 で有るから、 p ≡ 1 (mod. 8) となる」の部分がどのようにして言えるのかが分かりません。フェルマーの小定理を用いているのでしょうか? よろしくお願いします。

  • 整合性の意味について

    整合性の意味を調べると⇒むむじゅん‐せい【無矛盾性】 と出てきます。そして【無矛盾性】⇒「理論体系一般において、ある公理系内に相互に矛盾する公理が存在しないこと。また、そこからの命題の導出に論理的矛盾がないこと。」 と出てきます。 さっぱり意味がわかりません。 無矛盾だから、要は矛盾していないということでしょう? 簡単に言うとどういうことでしょうか? 意味や使い方をお教えいただきたいです。 よろいしくお願いします。