• 締切済み

積分について

∫t・f(t-x)dtというものがあったとします。 このとき、f(t-x)は扱いにくいのでu=t-xとおくと ∫t・f(t-x)dt=∫(u+x)・f(u)duとなります。(積分区間は省略します。) そして∫(u+x)・f(u)du=∫(t+x)・f(t)dtという変形をよく見ますが、この変形はなぜ可能なのでしょうか? 途中までは理解できますが、最後にuをそのままtに変えています。 u=t-xとおいているのに、なぜ勝手にuをtに変えてよいのでしょうか? この手法は、積分関数で、両辺をxで微分する際によく使われるものです。

みんなの回答

  • info22
  • ベストアンサー率55% (2225/4034)
回答No.2

>(積分区間は省略します。) 定積分ですね。 積分変数は、変数変換による積分区間に正しく反映されているなら、 どんな文字に置き換えても構いません。 定積分であれば最終的には積分変数は積分結果に現れない変数なので 間違えなければ(混乱しないように)どんな文字を使っても構いません。 使い慣れた、x,tなどがよく使われます。 ここでは積分する上では定数としてすでに文字xが使われていますので tを使っただけのことです。 > 最後にuをそのままtに変えています。 >u=t-xとおいているのに、なぜ勝手にuをtに変えてよいのでしょうか? 「u=t-x」この式は積分変数tを積分変数uに置換する式ですから、 定積分の積分区間にも反映させないといけません。 後の「t=u」の置換は特別な意味はなく個人的な好みの問題で、最初の積分変数のtは関係ありません。定積分の積分変数は結果に影響しませんから 何を使っても良いということです。 なお、不定積分では、最初の積分変数tと同じ変数tに再度置換してはいけませんね。 不定積分では、最終的には最初の積分変数に戻しておく必要があるからです。「t=u」とおけば、最初の積分変数に戻せなくなります。

  • kabaokaba
  • ベストアンサー率51% (724/1416)
回答No.1

最初のtと最後のtは違うもの. uのまま計算するのがみにくくなりそうな場合に なれた文字にただ置き換えるだけ.

関連するQ&A

  • 積分方程式・・・

    「次の等式を満たす2次の整数f(x)を求めよ   x∫f(t)dt (定積分の区間は下端1、上端x)=f(x)+3x^4-4x^3-9 」という問題の解説で「この問いの積分方程式において両辺をxで微分すると(左辺では積の微分公式を用いる) ∫f(t)dt (定積分の区間は下端1、上端x)+xf(x)=f'(x)+12x^3-12x^2となり・・」とあったのですがどうして「∫f(t)dt (定積分の区間は下端1、上端x)+xf(x)  =f'(x)+12x^3-12x^2」となるのかわかりません・・ 教えてください!!

  • 積分を微分

    ちょっとなんて表現すればいいのか分からなかったのでタイトルが変になってしまいましたが・・・(汗 関数f(x)=∫(t-x)sintdt (積分区間は0からx)です まず、dtとあるのでtについての積分だから、xは定数であるとみなせるから、ひとまず、分離する。 f(x)=∫tsintdt-x∫sintdt・・・(☆) とまではできたのですが、この後が分かりません。 f'(x)=とするとd/dx∫~dt という感じになると思いますけど、これって意味的には、積分するやつを微分するということだから、積分してあげて、微分すればいいんですよね? 初めの積分関数は部分積分法で(t^2/2)sintと中身を変形してからやってみると2回積分しなきゃいけない感じになってしまい・・・ けど答えを見ると(☆)の次のステップでは f'(x)=xsinx-(∫sintdt+xsinx) となっております。 いまいち理解できません・・・。積分して微分すんだから行って戻って±0 ってことは被積分関数に区間を0~xをそのまま代入しただけじゃん!だから[tsint](0~x) により xsinx ・・・っていう感じもしなくはないですが・・・ 間違えですよね? 区間に0が入ってたからたまたまうまく行ったって感じもしますし・・・。 はっきり言うと、問題の意味自体、あまりよく分かっていません・・・なので質問内容も理解しかねる点があるかもしれませんが、よろしくおねがいします

  • 積分の質問です

    S f(t) dt = 1/x で積分区間がa~x のとき、両辺をxで微分するとf(x)=-1/x^2 でも元の式に代入して検算すると定数項が-1/a になり0にはなりません。 何がおかしいのでしょうか?

  • 再帰的微積分

    次の問題について f(x) = 1 + 2x + 2∫[x-0](tf'(x-t))dt を満たすf(x)を求めよ 解答を見ると、f(x) = (e)^2x となっているのですが、解答解説そのものが信用できません。 解説の一行目で、x - t = u とおくと、dt = -du としているのですが、x,t,uは相互に関数の関係にあるため、このように変形できないように思われます。 どなたか、解法解説をお願いいたします。 以下、自力で解いてみましたが、欠片も似つかない回答になったものを提示します。 与式両辺を微分すると、 f'(x) = 2 + 2xf(x-x) = 2 + 2xf(0)。 与式に代入して、 f(x) = 1 + 2x + 2∫[x-0](t(2+ 2(x-t)f(0))dt x = 0を代入して、 f(0) = 1 + 2∫[0-0](t(2+ 2(-t)f(0))dt = 1 従って、f(0) = 1より、 f(x) = 1 + 2x + 2∫[x-0](t(2+ 2(x-t))dt f(x) = 1 + 2x + 2t^2 + 2∫[x-0](t(2(x-t))dt f(x) = 2/3x^3 + 2x^2 + 2x + 1

  • この積分の求め方を教えて下さい。お願いします。

    こんにちは、式を打つことができなかったため、添付の通り、手書きで失礼します。 もともとは物理の問題だったのですが、答えを求める最終工程での積分でつまづいており、 何とか解法を教えていただけないかと思いました。 二問ありまして、両方とも式の基本的な骨格は似ているのですが、もしかしたら解法はことなるのかも知れません。 Q1は、「いつのまにやら」解けてしまいました。 u = (x^2 + a^2)として、置換積分を始めたところ、 インテグラルの中身が二つの関数、片方はx、もう片方は(x^2 + a^2)^(-3/2)でありまして、xが uをxについて微分したもので表せることに気付きました。つまりdu/dx = 2x したがって、xは(1/2) du/dx これをインテグラルの中に代入すると、du/dx とdxが中に存在することになり、duで表されてしまいました。すると後は、uについて積分してあげれば答えは出てしまいました。確かに求めた答えはあっているのですが、一体どういった定理・公式を使ったのか、偶然できただけなのか、解いた本人が理解しておりません。どうか、お教え頂ければと思います。 Q2は、途中でつまづいています。そのため、途中の経過も正しい道に進んでいるのかわからなくなってしまいました。基本的には置換積分を使っています。ところが、u = (x^2 + a^2)として置換作業をしようとしても、xが二乗であるため、シンプルにxをuの関数で表すことができません。 本来は、∫f(u) dx/du du と置換積分の公式に乗せたいところですが、dx/duがシンプルに求まりません。つまり、u = (x^2 + a^2)をuについて微分すると、1 = 2x dx/du + 0 となり、dx/duがuの関数に収まってくれません。このため、∫f(u) dx/du du = ∫u^(-3/2) (1/2x) duとなり、インテグラルの中身がまだ二つの文字が含まれ、ここで計算が止まってしまいました。どうか、解法のヒントを与えて頂ければと思います。 この文章や添付で式が見辛いことがあるかと思いますが、すみません。 その際はご指摘頂ければ書き直します。 以上の二点について、どうか宜しくお願い致します。

  • 不定積分

    ∫dx/√(4x-x^2)を求めよという問題を解いてみたのですが、模範解答のsin^(-1)(x-2)/2と合いません。以下に私の解答を記しますので、間違いを指摘していただけると幸いです。 t=√(4x-x^2)とおく。 t=√(4x-x^2)⇒t^2=4x-x^2⇔(x-2)^2=4-t^2 ⇔x-2=±√(4-t^2)⇔x=2±√(4-t^2) 両辺をtで微分すると、dx=干tdt/√(4-t^2) (マイナスプラスの記号が見つからなかったので干で代用させていただきます) よって、 (与式)= ∫dx/√(4x-x^2)=干∫dt/√(4-t^2)=干∫dt/2√(1-(t/2)^2) u=t/2とおく。両辺を微分すると、dt=2du ∴(与式)=干∫du/√(1-u^2)=干sin^(-1)u +C=干sin^(-1)√(4x-x^2)/2 +C

  • 置換積分

    ∫2x(x^2+1)dx について、 本の解法では u=x^2+1 とおき、dx=du/2x とする。 と書いてありますが、これは u=x^2+1 の両辺をxで微分するとdu/dx=2x  両辺にdxを掛け、2xで割る、 という変形を行っていると解釈してよろしいのでしょう?

  • 積分について

    4-x^2 ∫ 2√(4-x^2-y)dy 0 この積分の計算の計算方法は以下のようなやり方でいいのでしょうか? 4-x^2-y =u とおき,両辺をyで微分して -1dy=duとし、 y=0のときu=4-x^2 y=4-x^2のときu=0 よって 4-x^2 ∫ 2√(4-x^2-y)dy 0  0 =∫ -2√(u)du  4-x^2            u=0 =[(-2)(2/3)u^(3/2)}]            4-x^2 =(4/3)(4-x^2)^(3/2) (終わり) 一つ疑問なのが、 “4-x^2-y =u とおき,両辺をyで微分して-1dy=duとする” この表現について、∂を使った偏微分にしなくていいのでしょうか? xとyがあるので、dではいけないようなきがするのですが、、、 もしこの解法が正しいのなら ∂ではなくdにしている理由を教えてください。

  • 微積分学の基本定理

    微積分学の基本定理 f(x)はα≦x≦βで連続とし、a,xを、α<a<β、α<x<βを満たす実数とするとき、xの関数∫(a~x)f(t)dtはxで微分可能で、(d/dx)∫(a~x)f(t)dt=f(x) (質問内容) (1)なぜxで微分可能といえるのでしょうか?(連続ならば、微分可能ではないのでは?) (2)この後の記述で、<この定理は、f(x)を積分した関数を微分すると、またf(x)になるということを述べている。> とあるのですが、f(t)をtで積分しているのではないでしょうか?

  • 積分

    積分について u=t^2+1とおくとき (t^2+1)’×dt=2t×dt=du  ※dはdeferrencialで微小の意味。 上記のようになるのはわかるのですが、 (t^2+1)’×dt=2t×dt=du =u'×du となるのはどうしてでしょうか。 u=t^2+1なのでこの微分がu'なのはわかるのですが。 このあとどうして微小のuなのでしょうか。 同じような問題で cosθ=tとおいたとき (cosθ)’×dθ=-sinθ×dθ=dt つまりt=cosθの変化量 =t'×dt (cosθ=tの瞬間変化率に微小のtをかけるとはたとえば図形的にはどう理解するのか。ここらへんもよくわかりません。) となるのはどうしてでしょうか。 どうかよろしくお願いします。