• 締切済み

大阪大学大学院 数学専攻 問題 2007年

X;コンパクト位相空間、Y;位相空間、aをYの点とする。 f;X×Y(直積)→R(実数)を直積位相空間X×Y上の連続関数とし、 Xの任意にのxに対し、f(x,a)がゼロでないを満たすとする。 このときYにふくまれるaの開近傍Uで X×Uに含まれる任意の(x,y)に対し、f(x,y)がゼロでない を満たすものが存在することを示せ。 読みにくいと思いまずが、大阪大学の数学専攻の2007年度の 問題です。 よろしくお願いします。

みんなの回答

  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.2

X:コンパクト位相空間、Y:位相空間、a∈Y とする。 f:X×Y→R(実数)を 連続関数とし, X∋xに対し、f(x,a)≠0 とする。 このとき Y⊃U∋a & U は開集合 & ( (x,y)∈X×U→ f(x,y)≠0 ) となる U が存在することの証明 任意の b∈X に対して、 f(b,a)≠0 だから |f(b,a)|>0 で f は連続だから b∈V_b⊂X , a∈U_b⊂Y で  (x,y)∈V_b×U_b → |f(x,y)-f(b,a)|<|f(b,a)|/2  となるような bの開近傍 V_b と a の開近傍 U_b が存在する (Y の開集合U_bはYの元aの近傍だがXの元bに関係して変化するのでU_bとしている事に注意!) X=∪_{b∈X}V_b で X コンパクトだから X=∪_{1≦k≦n}V_{b_k} となる {b_k}_{1≦k≦n}⊂X がある U=∩_{1≦k≦n}U_{b_k} とすると 任意の b∈X に対して a∈U_b だから a∈U 開集合の有限個の共通部分は開集合だから U は 開集合 (x,y)∈X×U に対して x∈V_{b_k} ,y∈U_{b_k} となる b_k があり (x,y)∈V_{b_k}×U_{b_k} だから |f(x,y)-f(b_k,a)|<|f(b_k,a)|/2   0<|f(b_k,a)|/2<|f(x,y)| だから f(x,y)≠0

  • rnakamra
  • ベストアンサー率59% (761/1282)
回答No.1

ヒントだけ。 X:コンパクト位相空間ですから、|f(x,a)|には最小値が存在します。 この最小値は0ではない値です。 この値をεとして、連続関数の定義に当てはめてみれば見通しが立つと思います。 わからなければ連続関数の定義を補足に書いた上でお知らせください。

softbanks
質問者

補足

再度考えましたが、位相空間の連続性では距離空間の連続性とは違い ε>0を用いて表せないのではないでしょうか? fがR(実数)への写像になっているので上のようなことが出来る のでしょうか? 位相空間の連続性の定義はいろいろありますが、一般的なものは Yの任意の開集合の逆像がXの開集合になることだと思います。 出来れば詳しい回答をお願いします。

関連するQ&A

  • 位相

    X を位相空間,Y をコンパクト位相空間とする.このとき, (1) U を直積位相空間X × Y の開集合としたとき, A = { x | {x} ×Y ⊂ U } はX の開集合であることを示せ. これを解くためのヒントをください。 Aに含まれる任意の点 x1のある近傍がAに含まれることをしめすんですね。そのような近傍をどうとればいいんでしょうか。

  • 位相数学の問題です

    問1。 x∈R^2,r>0に対しR^2の部分集合Ur(x),Ir(x)を Ur(x)={y∈R^2:d2(x,y)<r} Ir(x)={y∈R^2:d∞(x,y)<r} とする。 ここでd2はEuclid距離,d∞はノルムⅠⅠ・ⅠⅠ∞により定義される距離(のn=2の場合)とする。 このときy∈Ir(x)に対しUp(y)⊂Ir(x)となるp>0を具体的に求めろ。 問2 (X,D)を位相空間。△:X→X×X、△(x)=(x,x)を対角線写像とする。このとき、△は位相空間Xから積空間X×Xへの連続写像であることを示せ。 問3 X、Yを位相空間とする。写像f:X→Yに対し、F:X→X×Y、F(x)=(x,f(x))とする。fが連続ならばFはXからの直積空間X×Yへの連続であることを示せ。 問4 X×Yを位相空間(X,Dx)と(Y,Dy)の直積空間とする。Xの任意の点xに対してX×Yの部分空間{x}×Y(={(x,y)∈X×Y:y∈Y})はYと同相であることを示せ。 問5 (X,Dx)、(Y,Dy)を位相空間、(Z,Dz) (Z=X×Y)を直積位相空間、px:Z→X、py:Z→Yを射影とする。次の主張が正しければ証明し、誤りであれば反例をあげろ。 (i)射影pxは開写像である (ii)射影pxは閉写像である

  • 集合と位相

    (1)X,Yは位相空間とする。A,BがそれぞれX,Yの開集合であるときA×Bは直積位相X×Yの閉集合であることを示せ。 (2){Xλ}λ∈Λを位相空間の族としてAλ⊂Xλ(λ∈Λ)とする。 この時直積位相空間Πλ∈ΛXλにおいて以下を示せ。 (閉包のバーの書き方がわからないのでclと表記します) (a)cl(Πλ∈ΛAλ)=Πλ∈ΛclAλを示せ。 (b)Λは無限集合であるとき、Int(Πλ∈ΛAλ)≠φであるための必要十分条件は有限個のIntAλ≠φであり、かつその他のλについてはAλ=Xλであることを示せ。 (1)は以下のように考えたのですがわかりません。 Aの補集合、Bの補集合はそれぞれX,Yの開集合となる。 よってA^c×B^cは直積位相X×Yの開集合となる。 また(A×B)^c=(A^c×Y)∪(X×B^c) ここで詰まってしまいました。友人に聞いてみたら、 「生成する」位相という言葉の定義がわかってないと言われました。これはどのような意味なのでしょうか? 例えは直積位相の定義にもありました。 X,Yが位相空間でそれぞれの位相をЦx、Цyとした時に Цx×Цy={O1×O2|O1∈Цx,O2∈Цy}が生成する位相を直積位相という。 また位相を「入れる」ということはどういう意味なのでしょうか? (2)(a)は次のように考えてみましたがどうでしょうか? (⊃) ∀x∈Πλ∈ΛclAλを取る。∃λ∈Λ s.t. x∈clAλであるから xの任意の近傍はAλと交わる。したがってxの近傍はAλよりも大きい集合Π(λ∈Λ)Aλとも交わるので、 xはcl(Π(λ∈Λ) Aλ)の点になる。 (⊂) ∀x∈cl(Π(λ∈Λ) Aλ)を取る。 xの任意の近傍とΠ(λ∈Λ)Aλは交わるから、 あるAλと任意の近傍は交わる。これよりx∈clAλ よってx∈Πλ∈ΛclAλ (b)はわかりませんでした。アドバイスお願いします。

  • 位相数学について再び質問です

    http://oshiete1.goo.ne.jp/qa2686308.htmlで質問したものです。 また自分なりに考えた解答を添削&教えてください。 問1-1)(X、Ox)(Y,Oy)を位相空間とする     X × Yの直積位相とは何か? これがさっぱりわかりません。 問1-2)XとYがハウスドルフ空間ならば、X × Yもハウスドルフ空間であることを示せ。 これもさっぱりです。たぶん問1-1を使うと思います。 問2)(X、d)を距離空間とする    距離dの定めるXの位相Odの定義とはなにか? これもわかりません、どういう意味でしょうか?位相Odが距離空間の定義を満たすということでしょうか? 問3)Xがコンパクトで、A⊂Xが閉集合ならAもコンパクトであることをしめせ。 Xがコンパクトだから、Xの任意の開被覆が必ずXの有限被覆を部分集合として含んでいる。ここまではいいと思います。たぶんAがコンパクトでないと仮定して矛盾を示すと思います。これ以上がどうしてもわからないです。    

  • 位相空間のコンパクト化の問題で困っています。

    最初に問題と回答を写します (X,〇)、(X',〇')、(X'',〇'') をそれぞれ 〇, 〇', 〇''を開集合系とする位相空間 f:X→X' g:X'→X'' を連続写像とする 問:Y⊂X がコンパクトであるとき f(Y) がコンパクトになることを証明せよ 答:ц={U(λ)|λ∈Λ} を f(Y) の開被覆とすると f が連続写像であることより ц'={f^(-1)・(U(λ)) |λ∈Λ} は Y の開被覆となる Y はコンパクトであるから,ある ц' の部分被覆 {f^(-1)・(U(λ1))、f^(-1)・(U(λ2))、…、f^(-1)・(U(λn))} が存在する。このとき {U(λ1)、U(λ2)、…、U(λn)} が ц の部分被覆になるのは容易に分かるので f(Y) はコンパクト ■ この最後のところで、どうして {U(λ1)、U(λ2)、…、U(λn)} が цの部分被覆になるのかが分からないので教えて欲しいです。 よろしくお願いします。別解などありましたら歓迎です。

  • 直積位相

    X、Yを位相空間とする。 『W⊂X×YがX×Yの開集合⇔任意の(x,y)∈Wに対して、x∈XのXにおける開近傍U⊂X、y∈YのYにおける開近傍V⊂YでU×V⊂Wとなるものが取れる』 と定義することにより、X×Yは位相空間になる事を示せ。 という問題です。 X、Yが位相空間なので、それぞれの位相をO(X)、O(Y)としてX×Yの位相をO(X×Y)={Uλ×Vλ;Uλ∈O(X)、Vλ∈O(Y)}とおいて証明しようとしたのですが、これでは上記の定義が満たされていないと注意され詰まってしましました。 どなたかアドバイス(もしくは証明)していただけませんでしょうか?

  • 大学数学に関する質問です。(至急)お応え頂けると有難いです。

    大学数学に関する質問です。(至急)お応え頂けると有難いです。 大学で数学を専攻されている理学部系統の方、理学部以外でも大学の数学に興味・関心がある方にお答え頂きたい数学の質問があります。分野は「位相空間論」という頭で幾何的イメージ・理解を前提にするものです。(ご存知の方、すみません。) 問題は2つです。 1.(X,d)を位相空間とするとき、Xの任意の連結成分は開集合であることの証明 2. (X,Dx),(Y,Dy)を位相空間とするとき、次の(i),(ii)は同値であることを示して下さい。 (i)直積位相空間(X×Y,d)はコンパクトである。  (ii)(X,Dx)と(Y,Dy)はコンパクトである。 質問は以上です。 もちろん、自分でもある程度考え、ある程度の方向性は見えてきたのですが、「位相空間論」は問題によっては、定義を示して終了以外の解法もあるので、そういった素晴らしい、エレガントな解法をご存じの方もご協力お願い致します。

  • 有限集合からなる位相空間における写像の連続性

    ある位相空間Xから別の位相空間Yへの写像fが連続であるとは、Yの任意の開集合Oの逆像f^-1(O)が開集合であると定義されていると思いますが、この定義に従うと、有限集合に位相を入れた位相空間Xからの別の位相空間Yへの写像は、位相空間Xの集合が全部開集合となり、必ず連続になるのでしょうか。

  • 位相数学の証明問題です。

    直積集合では、2つの射影写像px:X×Y→Xおよびpy:X×Y→Yがpx(x,y)=x、py(x,y)=yで定義できる。 X、Yが位相空間(X、Ox)、(Y、Oy)であるとき、上に述べた直積位相は、px、pyの双方を連続写像とするようなX×Y上の位相のうち、もっとも弱い位相である ことを証明してください。 よろしくお願いします。

  • 位相による写像が連続かどうかの問題です。

    位相による写像が連続かどうかの問題です。 (X,Qx),(Y,Qy):位相空間 写像f:X→Yが連続 ⇔任意のU∈Qyに対して,f^-1(U)∈Qx―(1) R^m:m次元数空間 Q^(m):R^mの開集合全体のなす集合族 X=(R^m,Q^(m)) Y=(R^n,Q^(n)) とすると f:R^m→R^nが(1)の意味で連続 ⇔任意のx∈R^m,任意のε>0,δ(存在する)>0,s,t f(N(x,δ))⊂N(f(x),ε) を証明せよ。 わかる方いましたらどうかよろしくお願いいたします<(_ _)>