• 締切済み

至急お願いします

KSnakeの回答

  • KSnake
  • ベストアンサー率83% (5/6)
回答No.3

f(x)は微分可能とし、lim_[x→∞]f'(x)=aとする。 このとき、 lim_[x→∞](f(x+b)-f(x-b))を求めよ と解釈できますがこれであってますかね。

関連するQ&A

  • 微分可能

    f(x)=ax^2+bx-2 (x>=1),x^3+(1-a)x^2 (x<1) がx=1で微分可能になるようにa,bを定める問題です。 微分して f'(x)=2ax+b (x>1),3x^2+2(1-a)x (x<1) とし、 lim_{x→1-0}f(x)=lim_{x→1+0}f(x) lim_{x→1-0}f'(x)=lim_{x→1+0}f'(x) から連立方程式を導き求めたのですが問題ないでしょうか。解答では定義にしたがってf'(x)の右極限と左極限を計算しているものですから。 よろしくお願いします。

  • 関数f(x)の連続性と微分可能性に関する問題です。

    aを実数とする。次で定義される関数f(x)の連続性と微分可能性を調べよ。 x≦0のときf(x)=0、x>0のときf(x)=x^a*sin1/x という問題について、解いている途中で混乱が生じました。 x≠0のときf(x)は連続かつ微分可能だから、x=0におけるふるまいを調べる。 x>0のとき、f'(x)=a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/xであり、x<0のときf'(x)=0 (i)右からの極限 -1≦sin1/x≦1だから、-x^a≦x^a*sin1/x≦x^a はさみうちの原理より、lim【x→+0】(-x^a)≦lim【x→+0】f(x)≦lim【x→+0】x^a a>0ならばlim【x→+0】f(x)=0 a=0のときはlim【x→+0】f(x)=1 a<0のときはlim【x→+0】f(x)は発散。 よってa>0のとき連続。a≦0のとき不連続。(答) 次に微分可能性を調べる。 (ii)右からの極限 lim【x→+0】f'(x)=lim【x→+0】{a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/x} (i)と同様に考えるとlim【x→+0】a*x^(a-1)*sin(1/x)はa>1のとき0。a=0のときも0。 a=1のときsin∞となり発散で微分不可能。a<1のときも発散で微分不可能。 ゆえにa>1またはa=0に限定してlim【x→+0】f'(x)の極限を調べる。 このときlim【x→+0】f'(x)=lim【x→+0】{-x^(a-2)*cos1/x} -1≦cos1/x≦1であり、同様にはさみうちの原理からlim【x→+0】f'(x)はa>2ならばlim【x→+0】f'(x)=0で微分可能。a<2ならば微分不可能。(答) 問題集には、a>1のとき微分可能。a≦1のとき微分不可能と書いてあります。私の解き方のいけない点を教えてください。

  • 微分の問題

    微分の問題 (1) ※limはh→0とする。 lim{f(a+h)-f(a-3h)}/h (2) ※limはx→aとする。 lim{x^4・f(a)-a^4・f(x)}/(x-a) この2問が分からないので考え方を教えてください

  • 全微分可能性の問題です。(再考しました)

    回答者の皆様にはいつもお世話になります。 以下の全微分の問題ですが、全微分可能性の厳密な理解が私自身できていない気がします。 お知恵をお貸しください。 問題:f(x,y)が点(a,b)で全微分可能である事の定義を示し、それを利用してf(x,y)=√(1-x^2-y^2)の原点での微分可能性を証明せよ。 f(x,y)がxとyについて偏微分可能である。(fx,fyと表現します) f(x,y)を点(a,b)の周りで一次近似する最良の平面はf(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)であり、その誤差εはf(x,y)-{f(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)}となる。 (x,y)→(a,b)の時、この誤差εがベクトル((x-a),(y-b))の絶対値√((x-a)^2+(y-b)^2)より先に0になれば微分可能なので、lim[(x,y)→(a,b)] [f(x,y)-{f(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)}] / √((x-a)^2+(y-b)^2)=0がf(x,y)の点(a,b)における全微分可能の定義となる。 f(x,y)=√(1-x^2-y^2)のとき、f(0,0)=1 fx(x,y)=-2x・{1/2√(1-x^2-y^2)}より、fx(0,0)=0 fy(x,y)=-2y・{1/2√(1-x^2-y^2)}より、fy(0,0)=0 ∴ε=√(1-x^2-y^2)-1-{0・(x-0)+0・(y-0)}=√(1-x^2-y^2)-1 又ベクトル(x-0,y-0)の絶対値は√(x^2+y^2) 以上より、lim[(x,y)→(0,0)] {√(1-x^2-y^2)-1}/√(x^2+y^2)=0の時、全微分可能 極座標で考えると、(x,y)→(0,0)の時、r→0であり、x=r・cosθ,y=r・sinθ、 代入してlim[r→0] {√(1-r^2)-1}/r、分子を有理化して、 lim[r→0] -r^2/{r√(1-r^2)+1}=lim[r→0] -r/{√(1-r^2)+1}=-0/2=0 つまり全微分可能である。 というアプローチで如何でしょうか? ご指導願います。

  • 微分可能

    y=f(x)=(x^2)*sin(1/x) {x=0でないとき} =0 {x=0} (1)x=0で連続であるか? (2)x=0で微分可能か?考察せよ という問題で (1)はlim{x→0}f(x)=f(0)=0なので連続? だと思ったんですがこれを超丁寧に説明するとどうなりますか? (2)は微分可能の定義 f’(a)=lim{x→a}f(x)-f(a)/x-a が存在するときx=aで微分可能であると言える ってのはわかるんですが これをどう使えばいいのか そもそも存在するかどうかってどうやって示すんですか? この問題についても超丁寧に説明するとどうなりますかね? (超丁寧というのはまったく突っ込みようがないぐらいということです)

  • 本当に困っています…orz(全微分)

    全微分可能の定義の説明をしなさいという課題なのですが、過去2回提出したものの、理解不十分と評価されました。どの部分かの指摘が無いので、先に進めません。 まことに申し訳ありませんが、以下の考え方の間違っているところ等、ご指摘ください。 宜しくお願いします。 >>関数f(x,y)の点(a,b)における全微分可能を説明します。 関数f(x,y)の定義域内で点(a,b)が点(a+Δx,b+Δy)へ移動したとき、変化量はA、BをΔx,Δyと無関係な定数として、 lim[(Δx,Δy)→0] ε=0 の条件のもと、 f(a+Δx,b+Δy)-f(a,b)=AΔx+BΔy+ε√(Δx^2+Δy^2) Δy=0の時、f(a+Δx,b)-f(a,b)=AΔx+ε|Δx|より A={f(a+Δx,b)-f(a,b)}/Δx-{ε|Δx|}/Δx Δx→0を考えると、lim[(Δx,Δy)→0] ε=0より A=lim[Δx→0] {f(a+Δx,b)-f(a,b)}/Δx=fx(a,b)…xの偏微分 同様にΔx=0の時、Δy→0を考えると、 B=lim[Δy→0] {f(a,b+Δy)-f(a,b)}/Δy=fy(a,b)…yの偏微分 以上より、変化量は Δf=fx(a,b)Δx+fy(a,b)Δy+ε√(Δx^2+Δy^2) かつlim[(Δx,Δy)→0] ε=0 で表される。この時、関数f(x,y)は点(a,b)において全微分可能である//

  • 微分 可能 について 

    微分係数の定義は、 (1)f´(a)=lim[h→0](f(a+h)-f(a))/h これを変形すると、 lim[h→0](f(a+h)-f(a))=lim[h→0]h・f´(a) よって、lim[h→0]f(a+h)=f(a)となります。 x=a+hとすれば、 (2)lim[x→a]f(x)=f(a) となります。 lim[x→a]f(x)=f(a)はf(x)にaを代入している事と同じになると 思います。 ここで、問題です。 f(x)=|x|のx=0について微分可能で無い事を示す場合、 (1)式で解くと、 右極限 lim[h→+0](|0+h|-|0|)/h=lim[h→+0]|h|/h=1 左極限 lim[h→-0](|0+h|-|0|)/h h=-tと置くと、t→+0となる。 lim[t→+0](|0-t|-|0|)/-t=lim[t→+0]|t|/-t=-1 となり、lim[h→+0](|0+h|-|0|)/h≠lim[h→-0](|0+h|-|0|)/h なのでf(x)=|x|はx=0について微分可能でない。 (2)式で解くと、 右極限 lim[x→+0]|x|=0 左極限 lim[x→-0]|x|=0 x=-tと置くと、t→+0となる。 lim[t→+0]|-t|=0 よって、lim[x→+0]|x|=lim[x→-0]|x|となり微分可能であると成ってしまいます。 (1)式=(2)式なのに、解が異なってしまうのは何故でしょうか?

  • 微分 可能 について その2

    以前、http://okwave.jp/qa5093106.htmlにて質問させて頂きました。 以前の質問内容でなかなかご回答頂けなかったので再度質問させて頂きます。 f(x)=x/|x| x=0において微分可能かどうかという問題についてです。これは、連続の式lim[x→a]f(x)=f(a)より、 lim[x→0]x/|x|となるのですが、x/|x|というのはただ単純に約分することは出来ないのでしょうか? 約分できたとすると、lim[x→0]x/|x|=1となり連続になります。 グラフを書いてみたのですが、どうも連続ではなさそうなので、単純に約分できないと言う事でしょうか? lim[x→+0]x/|x|が不定という前提で続けます。 微分可能であるかどうかを示すために、lim[h→0](f(a+h)-f(a))/hを求めます。 右極限はlim[h→+0](0+h/|0+h|-0/|0|)/hとなり0/|0|不定形が出てきてしまいます・・・ 左極限も同じです。。。 どうやったら微分可能でないことを示せるのでしょうか? 解き方が分からずに悩んでいます・・・ 詳しい方ご回答よろしくお願い致します。 また、グラフを添付致しますが、f(x)=x/|x|のx=0におけるグラフは 表すことは出来ないのでしょうか?添付したグラフは正しいですか? 質問内容を整理します。 ・x/|xは単純に約分できないのか。 ・lim[h→+0](0+h/|0+h|-0/|0|)/hはどのようにとけば良いのか? ・x/|xのx=0における部分はグラフで表現できないのか? ・添付したグラフは正しいか? 以上、よろしくお願い致しますm(__)m

  • 至急お願いします(微分積分)

    [至急] 「関数f(x)はx=aの近傍でC(n回まで微分可能)級でf’(a)=・・・=f(n-1回微分)(a)=0,f(n回微分)(a)≠0である場合で 「関数f(x)はx=aの近傍でC(n回まで微分可能)級でf’(a)=・・・=f(n-1回微分)(a)=0,f(n回微分)(a)≠0である場合で (1)「f(x)がx=aの近傍でC(n回微分が可能)級」の意味を微分可能・連続の言葉を用いて説明せよ。 (2)f(x)をx=aの周りでTaylor展開せよ。 (3)nが偶数でf(n回微分)(a)>0のとき、f(x)はx=aで極小値をとることを示せ[f(n回微分)(a)<0のときは極大値である。] (4)nが奇襲でf(n回微分)(a)>0のとき、f(x)はx=aの近傍で単調増加となることを示せ[f(n回微分)(a)<0のときは単調減少である] 上の問題が分かる方がいましたら教えていただけると助かります。どれか1問のみでも結構です。 詳細な回答を頂けたら幸いです。

  • なぜ積分で面積?

    微分の原理はわかるんです。 例えばf(x)では、f’(x)=lim(b→a) {f(b)-f(a)}/(b-a)ってことで、(a,f(a))における接線の傾きを意味するんですよね。 では、積分するとなぜ面積になるんですか。原理がよくわかりません。