• ベストアンサー

禁制帯ができるのはなぜですか?

絶縁体や半導体、導電体はフェルミレベルの位置や禁制帯の大きさで決まってきますが、そもそも禁制帯ができるのはなぜなのでしょうか? この禁制帯というのはd軌道とf軌道のギャップに相当するものだと思うのですが、 原子の状態だとこのような大きなギャップは存在しないと思います。 固まりになることでこのように大きなギャップが出来るのはなぜなのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • semikuma
  • ベストアンサー率62% (156/251)
回答No.4

ん~、ここはあまり自信がありません。 最初は、バンドギャップは原子状態の電子軌道間の準位差が残ったものだとして回答してきましたが、よく考えたら、外側の電子軌道ほどエネルギー差は小さいですからね。 私は化学は専門ではありませんが、例えば3d軌道と4p軌道とはほとんどエネルギー差がないから、21Scから29Cuまでは遷移元素になるのですよね。 そんなこんなを考えていると、あなたの最初の質問にあるように、大きなバンドギャップが生じるのは何故だろうと私も疑問を持った次第です。 でも、原子状態の電子軌道とは関係なく、最外殻電子の波動関数が結晶格子で変調されて、存在出来ない帯域ができると考えると、大きなバンドギャップもできそうではありませんか。 実際、教科書にも必ず出てくるクローニッヒ・ペニーモデルも、周期的ポテンシャルという一種の回折格子と定在波の関係から、バンドギャップを導出していると私は理解しています。

参考URL:
http://202.11.2.126/cgi-bin/esemif17/note/8-6.pdf

その他の回答 (3)

  • semikuma
  • ベストアンサー率62% (156/251)
回答No.3

>電子は結晶格子によりブラッグ反射を受けるために、存在出来ない帯域ができてしまう、ということ良いのでしょうか? その通りです。 > でも、2つ疑問が残ってしまいます。 先ず2つめの疑問点について。 いいえ。禁制帯はいっぱいあります。 通常は伝導帯直下の禁制帯しか問題にならないのでこれしか議論しませんが、その下にはいくつかの充満帯があり、その間には禁制帯があります。 最上部の充満帯は価電子帯と呼ばれ、その電子は原子間の結合に寄与している、いわゆる「最外殻電子」です。 価電子帯の電子が熱や光などのエネルギーを受けて伝導帯にたたき上げられると、「伝導電子」となります。 # 余談ですが、伝導帯の上にも更に禁制帯と伝導帯がいくつも積み重なっており、紫外線やX線などの高エネルギー現象に関係してきます。 価電子帯の下は何と呼ばれるか知りませんが、原子核に強く束縛されて、電気伝導にはほとんど寄与しません。 これが、あなたの言う、「原子にとどまっている」電子です。 ここで私も気がつきましたが、通常言われている「バンドギャップ」は内殻電子とは関係がなく、「最外殻電子」のみに関係するのですね。 だから、内殻電子よりも大きなエネルギーギャップを生じると、理解できないでしょうか。 尚、結晶のように周期的な構造体中では、向きによって電子の感じるポテンシャルが違ってくるので、内殻電子のエネルギー準位も幅を持ちます。

dasugedegg
質問者

お礼

ありがとうございます。 >ここで私も気がつきましたが、通常言われている「バンドギャップ」は内殻電子とは関係がなく、「最外殻電子」のみに関係するのですね。 だから、内殻電子よりも大きなエネルギーギャップを生じると、理解できないでしょうか。 のところの意味がどうしても分からないのですが・・・ 最外殻電子のみ関係すると、なぜバンドギャップが広くなるのでしょうか?

  • semikuma
  • ベストアンサー率62% (156/251)
回答No.2

確かに、半導体のバンドギャップは原子の電子軌道間のエネルギーギャップより大きいものも多いですね。前の説明は忘れてください。 先ず原点に立ち返って、そもそも何故電子軌道ができるか考えてみましょう。 電子は波としての性質を持っており、"波動関数"で表されますが、その波長が短いほどエネルギーが高いことを示します。 また電子の量子性により、電子はとびとびのエネルギーしか持ちません。 そして波動関数の振幅は、電子の存在確率を表します。 原子では、原子核の回りに同じ波長の波動関数を並べて足し合わせると、全ての位相がぴったり一致したとき、存在確率が最大となります。 つまりその軌道を取る確率が最大であり、他の軌道は取り得ません。 最も単純な形はs軌道の球形であり、p軌道やd軌道といった複雑な構造もありますが、同じ軌道内の電子の波長、即ちエネルギーは一定です。 そしてそれ以外のエネルギーは取り得ない、禁制帯となります。 結晶では、原子核が周期的に並んでいるので、グレーティングによる光の回折と同様に、電子も結晶格子の回折(反射)を受けます。 そしてその回折波を足し合わせて、存在確率の高いエネルギーのみを電子はとることができます。 電子の不確定性と格子の幅により、取り得るエネルギーは幅を持ちますが、それでも取り得ないエネルギーとして残るのが、バンドギャップです。 尚、格子の間隔(格子定数)は向きによって異なるので、バンドギャップの値も向きにより違ってきますが、バルク結晶中では電子は自由に向きを変えられるので、通常は最も小さい値を、その結晶のバンドギャップとしています。

dasugedegg
質問者

お礼

回答ありがとうございます。 よく分からないのですが、では結論としては、 電子は結晶格子によりブラッグ反射を受けるために、 存在出来ない帯域ができてしまう、ということ良いのでしょうか? でも、2つ疑問が残ってしまいます。 確かに電流を流すという意味ではブラッグ反射のために、あるエネルギー帯域のものは変調を受けるというのは分かります。しかしながら、バンドギャップは特に伝導電子に限らず、原子にとどまっていても良いわけなので、固体におけるバンドギャップが原子のそれと比べて広がるという説明はつかないように思うのですが・・・ それとブラッグ反射によるのであれば禁制帯はいくつも出現しても良いように思うのですが、一つ結晶には基本的に1つしか禁制帯は表れませんよね?これはどう説明すれば良いのでしょうか? よろしくお願い致します。

  • semikuma
  • ベストアンサー率62% (156/251)
回答No.1

> 原子の状態だとこのような大きなギャップは存在しないと思います。 逆です。原子状態では一定のエネルギー準位にしか電子は存在しえません。 d軌道やf軌道は、位置的には雲のように広がっていますが、原子核からのポテンシャルは一定です。 つまり、大きな禁制帯を挟んで、線状のバンド(?)が並んでいる状態になります。 これが固まりになりと、ある電子にとっては、一番近い原子核からは強い束縛力を受けますが、周囲の原子核からも弱い束縛力を受けます。 結晶状態では、つまり原子が周期的に並ぶと、ある場所でのポテンシャルは、一番近い原子核からは一番下の準位でも、右隣の原子核からは二番目の準位に近く、その上の原子核からは三番目の準位に近い・・・という具合に、電子が取り得る(存在し得る)エネルギー準位に幅が生じます。 これが「バンド」です。 詳しくは、「固体物理」または「物性論」とタイトルのついた教科書の最初の方を読んで下さい。

dasugedegg
質問者

お礼

ありがとうございます。 ですから、結晶状態で隣合う原子の存在により、エネルギー準位の幅が広がる、ということは分かっているのですが、 その考えでいくと禁制帯は生じ得ないのではないでしょうか? いくつか固体物理や物性論の教科書は見てみましたが分かりませんでした。 よろしくお願いいたします。

関連するQ&A

  • 化合物半導体のフェルミ準位について

    真性半導体においてフェルミレベルがバンドギャップの中心にくる事は理解できたのですが、化合物半導体において同様の事を考えてみると当てはまらない事に気付きました。GaAsなどではn型不純物をドープしていないにもかかわらず、伝導体に近い位置にフェルミレベルが存在します。 理由のわかる方、よろしくお願いします。

  • 半導体のバンドギャップが小さくなる理由

    禁制帯などといったバンドギャップが現れる原理は、固体中は原子が周期的に並び周期ポテンシャルを持つからである。また、原子同士が接近して電子の波動関数が重なるので、電子の軌道が分裂して電子が存在できる状態に制限が生まれた事による。 理屈が間違っていると元も子も無いのでまず確認してもらいたいのですが、このように私は解釈しているのですが合っていますか?もし上の内容が正しいとすれば、シリコン等の元素がバンドギャップの幅(エネルギーギャップE_g)が狭くなる理由は一体どこから来るのでしょうか。参考書には半導体は絶縁体よりバンド幅が狭いというだけで狭くなる理由が書いてないので気になりました。 どなたかご教授してもらえないでしょうか。

  • バンドギャップについて

    バンドギャップを持つ半導体(絶縁体)を考えたとき、そのバンドギャップが現れる基本的な理由は、次の中でどれが一番近いのでしょうか? ただし、磁性半導体(絶縁体)は考えないでください。 また、出発点としては自由電子近似は使わず、局在した電子状態を考えてください。 1.伝導バンドと価電子バンドを形成する軌道のエネルギーが元々異なるから(例えば3sと3pのように)。 2.隣接原子同士が接近することで互いの軌道が重なり、結合軌道と反結合軌道に分かれるから。 3.1と2のどちらもありうる。 4.その他。 初めは2だと思っており、結合軌道から価電子バンドが、反結合軌道から伝導バンドがそれぞれ作られるのではないかと思っていました。 しかし、参考URLの2章にもあるように、2つの水素原子を考えると結合軌道と反結合軌道にエネルギー2t(t:移動積分)だけ分かれますが、3つ、4つと原子数を増やしていくとこのエネルギーはどんどん小さくなり、十分大きなN原子にまでなると、連続的になってしまいます。 つまり、エネルギーギャップがなくなってしまうと思うのです。 それで2は違うのかなと思いつつ色々考えたのですが分からず、質問させていただいた次第です。 それではよろしくお願いいたします。 参考URL:http://www.f.waseda.jp/terra/pdf/ceramics.pdf

  • p型半導体

    n型半導体においては、簡単に言ってしまうと、バンド図で考えて、低温付近ではフェルミ準位が伝導帯付近に存在し、温度増加につれて減少してゆき、中温付近では急激に減少し、高温付近ではフェルミ準位はほぼ禁制帯の真ん中に位置していると学びました。 そこで、質問なのですが、p型半導体の場合はフェルミ準位はどうなるのでしょうか? 低温付近では荷電子帯のすぐ上に位置し、温度上昇にしたがって準位が上昇していき、中温付近で急激に上昇し、高温付近ではほぼ禁制帯の真ん中に位置するという考えで正しいでしょうか? ご指南お願いいたします。

  • モット絶縁体について

    “モット絶縁体”って半導体ですか?絶縁体ですか? もしくは半導体や絶縁体の性質に関係はないのですか? 僕が調べたデータによると Cu2Oはバンドギャップ 2.2 eV で半導体 CuOはバンドギャップ 1.4 eV で半導体 CuOはモット絶縁体 でした。 CuOのほうがバンドギャップが小さいのに、モット絶縁体ということになってしまいました。 バンドギャップとモット絶縁体は関係あるのか、それともないのか、教えてください。

  • 半導体はどの程度の電流電圧で導体になるのか?

    半導体は、電気を通す導体と電気を通さない絶縁体の中間的性質を示す物質のことですが、 例えば、バンドギャップが1.0eVのもの(シリコンは約1.1eV)は、一般的に半導体に分類されます。 しかし、このバンドギャップ=1.0eVの半導体とは、どの程度の電圧・電流をかけると 価電子の励起が起きる(導電性になる)物質のことなのでしょう? (真性半導体のようなものを想定した場合) 電圧数ボルト?それとも数十ボルト?数百ボルト?数千ボルト? 半導体の導体と絶縁体の中間の性質と言われても、具体的なイメージが沸きません。 どなたか半導体分野に明るい方、分かりやすく教えて下さい。 よろしくお願いします。

  • 半導体や絶縁体のフェルミエネルギー

    基本的なことですが大事なことだと思うので質問させてください。 なぜ、フェルミエネルギーは半導体、絶縁体の場合には伝導帯と価電子帯の間の禁止帯の中にあるのでしょうか? 教科書などで普通に書かれていることですが、どうも納得いきません。 金属の場合には電子をバンドの底から詰めていき、その数が系の全電子数になったところの電子のエネルギーですが、 その定義をそのまま絶縁体や半導体で使うと価電子帯の一番上のところがフェルミエネルギーの位置になるのではないかと思うんですが。 また、禁止帯の位置には電子が存在できないのにフェルミエネルギーが そこにあるのもよくわかりません。 何かの数学的導出で真ん中に来ると証明されるのでしょうか? ご存知の方、お教えください。 また、なにか参考になるサイトや教科書等ありましたらあわせてご紹介いただけますとありがたいです。

  • フェルミエネルギーとは?

    理工学基礎 物性科学 坂田亮著 培風館 ↑ この本を勉強しているのですが、フェルミエネルギーというものはいったいなんなのかいまいちわかりません。 フェルミディラック分布関数によればフェルミエネルギーを取る電子が存在する確率が1/2になるようです。ところが、たとえば真性半導体であればフェルミエネルギーはちょうど禁制帯の真ん中に来ていますがそもそも禁制帯のエネルギーは電子は取りえないのだから存在確率は0なのではないでしょうか? また検索でフェルミエネルギーを調べると、電子の取りうる最大のエネルギーという記述がありましたが、これはつまり固体の中に存在する電子の最大のエネルギーを持っているものが半分であるということですか? 日本語がかなりまずいところもあるかと思われますが、ぜひとも教えていただきたいです。お願いします

  • 真性半導体について

    真性半導体は バンドギャップの中央にフェルミ準位がある それは 何故ですか?     導体に近づけるために 何かを混ぜて価電子帯と伝導体の幅(バンドギャップ)の間に         不純物を入れることによって 熱励起しやすくする と書いてありました。                  何を熱励起しやすくするのですか? 色々 考えてたら分からなくなってしまいました。 おしえてください 

  • フェルミディラック分布関数の問題が解けません

    シリコン真正半導体結晶の禁制帯幅Eg[wV]が温度T[K]の関数として、 Eg=1.21-4.1*10~-4Tと表わされるとします。 この結晶で、フェルミエネルギーより0.05eVだけ下位にあるエネルギー準位が温度T=300Kで電子に占有される確率を計算できません。 どなたか教えてください。 さらにこの結晶で、伝道帯の底に位置するエネルギー準位が温度T=300Kで電子に占有される確率を計算できません。 真正半導体のフェルミエネルギーレベルがどこにあるか考えればいいと思うのですが・・・