• ベストアンサー

最小値の存在証明って?

Tacosanの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「閉区間で連続な関数はその閉区間において最大値および最小値を持つ」という定理があるので, これが適用できる場合には最大値・最小値の存在をわざわざ示す必要はありません. ですが, 最初の問題については閉区間ではないので, 「与式に最小値があることは自明ではない」と書かれているのだと思います.

smile40BAE
質問者

お礼

なるほど、閉区間と開区間の差でしたか。 大体納得できました。 ありがとうございました♪

関連するQ&A

  • 最大、最小、微積分、偏微分

    それぞれの関数の最大、最小となる場合を調べよ 1,x^2-xy+y~2-2x+3y+1 2,x^22-5xy+2y~2+x-y-3 それぞれの関数の極大極小を調べよ。最大、最小になるか。 1,z=x^3-xy+y^2 2,z=(x^2+y^2-1)^2 という問題なんですがいまいちわかりません。 解説と解答ををお願いします。

  • 「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小

    「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小値と、そのときのx,yの値を求めよ。」という問題を解くと、  解)t=x^2-2xy+2y^2-4x+2y+8 とおき、Xについて整理すると、     =…={x-(y+2)}^2+y^2-2y+4       これより、tは、x=y+2 のとき、最小値y^2-2y+4 をとる。   ここで、g(y)=y^2-2y+4 とおくと、           (省略) と、この後は、g(y)=y^2-2y+4 を平方完成し、最小値を求めていきますが、このtの式の最小値が、 y^2+Z+4となるtの式が有った場合、tの最小値は、以下の3通りのどれでしょうか?  (1)y^2+Z+4 → y^2+Z+4 , (2)y^2+Z+4=y^2+(Z+4) より、z+4 ,  (3)y^2+Z+4=y^2+(Z+4) より、z+4は1次関数なので、最小値はもたない また、y^2+z^2+4となるtの式が有った場合、tの最小値は、  y^2+z^2+4 → y^2+z^2+4=y^2+(z^2+4) より、4  で合っているでしょうか?

  • 整数の最小値の存在について

    Zを整数全体の集合とします。 aを実数とするときZの部分集合 A={m∈Z | a<m} は最小値が存在することの証明を教えていただきたいです。 アルキメデスの性質から、ある自然数nが存在してa<nとなる事、つまりAは空でない事はわかってます。

  • 2次関数です。 式で表す…

    xの二次関数y=x^2+2mx-mの最小値zをmの式で表せ。 このzはmのどんな値に対して最大となるのか。その最大値を求めよ。 考え方~解答、解答をみて、やり方を学ばせてもらいますね。

  • 証明の問題

    「x+y+z=3,(x-1)^3+(y-1)^3+(z-1)^3=0のとき、x,y,zのうち少なくとも1つは1であることを証明せよ。」 という問題なんですが、(x-1)(y-1)(z-1)=0を証明すればいいのは分かります。 しかし、式を展開しても行き詰まってしまいます。 多分(x-1),(y-1),(z-1)を置き換えるのだと思うのですがよく分からなくなってしまいました。 分かる方、回答お願いします。

  • 最小値の問題を相加・相乗平均を使って解きましたが、正解でしょうか?

    (問題) x>0, y>0, z>0, x+y+z = 1 のとき、x^3 + y^3 + z^3 の最小値を求めよ。 ------------------------------------------------------------ (私の解答) x>0, y>0, z>0より、x^3>0, y^3>0, z^3>0 なので、相加・相乗平均の関係から、 x^3 + y^3 + z^3 ≧ 3 * (x^3 * y^3 * z^3)^(1/3) 等号成立は、x^3 = y^3 = z^3 のときで、 x>0, y>0, z>0 だから、x = y = z これと x+y+z = 1 より x = y = z = 1/3 のとき、x^3 + y^3 + z^3 は最小となる。 すなわち、x^3 + y^3 + z^3 ≧ 1/9 したがって、最小値は、1/9 ・・・(答) ------------------------------------------------------------ 上記のように解きましたが、自信がありません。 正解か否かのご判定と、間違っている場合は、何が間違いかをご指摘いただければ幸いです。

  • 3変数の場合の最小値の求め方‐偏微分を用いた方法で

    f(x,y,z)=zy/(z+y-x)の関数があります。 1) z≧x≧y 2)0≦x,y,z≦1(x,y,zはいずれも0から1の間) の2つの条件があります。ここに 3)x≧0.8, y≧0.65 の条件が加わった場合のf(x.y.z)の最小値を求めるというのが問題です。 解き方として考えたのは f(x,y,z)をx,y,zそれぞれで偏微分を行ったところdf(x,y,z)/dx>0, df(x,y,z)/dy>0, df(x,y,z)/dz<0であるから 3)の条件よりx=0.8、y=0.65, z=1の時が最小値をとり0.76が最小値である、 というのを考えたのですが正しいでしょうか。

  • 偏微分・全微分を使った証明

    力学のある問題の証明で困っております。 z(x,y)   zはx,yを変数に持つ関数(式は具体的には指定されていない) x=rcosα-ssinα y=rsinα+scosα  (αは定数) の時 ∂^2z/∂x^2+∂^2z/∂y^2 = ∂^2z/∂r^2+∂^2z/∂s^2 を証明せよ。 (^2は二階微分) です。 全微分を駆使して証明するようなのですが、私のやり方では右辺を展開する途中で ∂^2z/(∂r∂x)cosα+∂^2z/(∂r∂y)sinα-∂^2z/(∂s∂x)sinα+∂^2z/(∂s∂y)cosα が出てきました。(ここまで合ってればいいのですが・・・) そうすると、sinαとcosαの係数にある微分記号の分母∂x,∂yが邪魔で、この先どう変形して良いのかわからず、左辺の式まで持っていけません。 どなたかわかりませんでしょうか? 

  • 数I・II 方程式と不等式・式と証明

    数I・II 方程式と不等式・式と証明 解答解説お願いします x, y, z を実数とするとき, 次の問いに答えよ。 (1) √{(x^2+y^2+z^2)/3}, (x+y+z)/3 の大小を比較せよ。 (2) a≧3 のとき, x+y+z=x^2+y^2+z^2=a を満たすx, y, zの値を調べよ。

  • 不等式の証明

    x>0,y>0,z>0で、xyz>=0を満たすとき、 x^2/(x^5+y^2+z^2)+y^2/(x^2+y^5+z^2)+z^2/(x^2+y^2+z^5)=<1を証明せよ。 x^2/(x^5+y^2+z^2)=<□/(x^2+y^2+z^2)となるために□に何がくればいいのかを考えました。 同様に、y^2/(x^2+y^5+z^2)、z^2/(x^2+y^2+z^5)の場合を考えて、この3式を加えたとき、 右辺が1になるか、または、1以下を示せればいいと思いました。 しかし、□に当てはまる式を、yz、y^2z^2、xyz、などと考えましたが、うまくいかず。 また、分母を変えてみようかとも思いましたが、先ずはこれで通そうと思いました。 よろしく、アドバイスお願いします。