• 締切済み

教えてください

 1対1の対応の演習数学1のP94の7(1)です。 問題はaとbを2以上の互いに素な自然数とし、b個の自然数1,2,・・・,b全体の集合をNとする。また,自然数tに対して,tをbで割った余りをR(t)で表す。 (1)j∈N,k∈Nに対して,R(ja)=R(ka)ならば,j=kであることを示せ。とあって  解答 R(ja)=R(ka)より,ja-ka=(j-k)aはbで割り切れる。ところが,aとbは互いに素により,aはbと共通の素因数を1つも持たない。よって(j-k)aがbで割り切れるには,j-kがbの倍数でなければならない。他方,1≦j≦b,1≦k≦bより,-(b-1)≦j-k≦b-1となり,これを満たすj-kがbの倍数となるのは,j-k=0のときに限る。よって,j=kである。(証明終わり) とあるのですが、どうして-(b-1)≦j-k≦b-1となるのかわかりません。どうかよろしくお願いします。  

みんなの回答

回答No.2

>どうして-(b-1)≦j-k≦b-1となるのかわかりません 1≦j≦b,1≦k≦b ‥‥(1)から、kj平面上に図示して、j-k=mとするとき、直線:j=k+mのj切片mの値の範囲を求めると良い。 (1)は四角形の周上と内部を表すから、点(b、1)を通る時に最小。 点(1、b)を通る時に最大。 以上から、1-b≦m≦b-1 → 1-b≦j-k≦b-1。 質問者君へ。 1対1の対応の演習は概して良い本だが、私が受験生だった頃に比べて編集部の質が落ちている。 時々、1対1の対応の演習の問題についての質問があるが、この本の対象が初期levelだという事を意識せず、結構傲慢な回答が目に付く。 注意して使うように。

ti-cyankun
質問者

お礼

 回答頂き、ありがとうございました。注意事項にも気をつけて進めていこうと思います。

noname#101199
noname#101199
回答No.1

条件としてはj∈N,k∈Nで、N={1,2,3,…,b}です。 ですから、 1≦j≦b・・・(1) 1≦k≦b・・・(2)です。 質問の仕方からして、ここまではよろしいかと思います。 さて、(2)から -b≦-k≦-1 です。 これと(1)をそれぞれ"足す"と 1-b≦j-k≦-1+b 故に、-(b-1)≦j-k≦b-1 となります。 不等式は"引く"のはミスのもとです。"足す"ことに注意してください。 (たしか、1対1のどっかに不等式の引っかけ?問題があった記憶があります。探してみてください。) 1対1懐かしいです。。いい問題集ですよね~ 勉強頑張ってください!!

ti-cyankun
質問者

お礼

 早速回答頂き、ありがとうございました。よくわかりました。

関連するQ&A

  • 数学の問題2

    aとbを2以上の互いに素な自然数とし、b個の自然数1、2、...、b全体の集合をNとする また、自然数tに対して、tをbで割った余りをR(t)で表す (1)j∈N、k∈Nに対して、R(ja)=R(ka)ならばj=kであることを示せ このとき、「なにかの数二つ(m、nとします)をなにか(qとします)で割ったときのあまりが同じ⇔m-nもqで割りきれる」ことからa(j-k)がbで割りきれることになり、またaとbが互いに素だからj-kがbで割りきれます 一方1≦j≦b、1≦k≦bより数直線で考えて1-b≦j-k≦b-1 というところまできました! なのに答えはいきなりbの倍数になるのはj-k=0のときだけと言ってます!これはなぜですか?

  • 数学の問題

    aとbを2以上の互いに素な自然数とし、b個の自然数1、2、...、b全体の集合をNとする また、自然数tに対して、tをbで割った余りをR(t)で表す (1)j∈N、k∈Nに対して、R(ja)=R(ka)ならばj=kであることを示せ (2)i∈N、R(ia)=1をみたすiが存在することを示せ 学校では習っておらず非常に難航してるのでどう解くかを教えてください 追加で質問することもあるかもしれません

  • 整数問題

    aとbを2以上の互いに素な自然数とし、b個の自然数1,2・・・bまでの集合をNとする。 Nに属するjとkをそれぞれaでかけた数ajとakがbで割ったときにともに余りが同じのとき、j=kであることを示せ という問題で ajとakのbで割ったときの余りが同じだから (j-k)a=qb(qは整数) aとbは互いに素なのでj-kがbの因数でなければならない。 1≦j≦b、1≦k≦bなので -(b-1)≦j-k≦b-1 それで解説がここで1からb-1の数はbの倍数ではない、と書いているのですがなぜでしょうか? 理解できる方解説お願いします。

  • 論理的な誤りがあるなら指摘して

    いまnを3以上の自然数、mを自然数とする。 f(n)を「nと互いに素でnよりも小さい自然数の個数」と定義します。 f(6)なら、1、2、3、4、5のなかで互いに素なのは、1、2、4、5の4個よりf(6) = 4です。 さてm<nのときにmとnが互いに素なら、n-mとnも互いに素です(これは証明されたとします) このときf(n)が偶数であることを証明します。 ------------ k∈Nとして n = 2k+1のとき {1、2・・k}の集合をA {k+1、k+2・・2k}の集合をBとする。集合Aでnと互いに素な自然数をrとすると、 1≦ r ≦ k ⇔ n-k ≦ n-r ≦ n-1 ⇔ k+1≦ n-r ≦ 2kより互いに素なn-rは必ず集合Bに存在するので、集合Aの互いに素な個数とBの個数は同数なので、f(n)は偶数になる n = 2k+2のとき {1、2・・k}の集合をA {k+2、k+2・・2k+1}の集合をBとする。 {k+1}の集合をCとする 集合Cにおいて、n =2(k+1)とk+1は因数としてk+1(≧2)を持つので互いに素ではないのは 明らか。 集合Aでnと互いに素な自然数をrとすると、 1≦ r ≦ k ⇔ n-k ≦ n-r ≦ n-1 ⇔ k+2≦ n-r ≦ 2k+1より互いに素なn-rは必ず集合Bに存在し、さきほどと同じ議論になるので、f(n)は偶数になる qed で何か誤りがあるかね?

  • 解説でわからないところがあります

    aとbが互いに素であるとき、 a^2とb^2が互いに素であることを証明せよ なんですが a^2とb^2の最大公約数をGとおくと、 a^2=αG…(1) b^2=βG…(2) (αとβは互いに素)とおける。 Gの任意の素因数の1つをkとすると。(1)式よりa^2はkで割り切れる。kは素数より、aもkで割り切れる。同様に(2)式からbもkで割り切れる。条件よりaとbは互いに素であるから、k=1である。kはGの任意の素因数であるから、G=1となる。よって、a^2とb^2は互いに素である。 kはGの任意の素因数であるから、G=1となる。 というのがわかりません また a^2とb^2の最大公約数をGとおくと、 a^2=αG…(1) b^2=βG…(2) (αとβは互いに素)とおける。 Gの任意の素因数の1つをkとすると。(1)式よりa^2はkで割り切れる。kは素数より、aもkで割り切れる。同様に(2)式からbもkで割り切れる。条件よりaとbは互いに素であるから矛盾する よって aとbが互いに素であるとき、 a^2とb^2が互いに素であることが成り立つ という証明ではだめでしょうか だめならどうしてか教えてほしいです

  • 証明の問題がわからないです

    「aとbが互いに素であるとき、 a^2とb^2が互いに素であることを証明せよ」何ですが模範解答を教えてください 素因数分解の一意性から、 a,bの素因数分解が a=a_1・a_2…a_m (各a_iは素数) b=b_1・b_2…b_n (各b_jは素数)のように示すのではなく 最大公約数を考えて背理法で示すやり方でお願いします

  • 素因数分解の一意性?????

    m,n,p,qをすべて互いに素な自然数とした時に、 2^n・p^m=q^mにおいて、 素因数分解の一意性より、qは2の倍数である。 素因数分解の一意性ってどういうことなのでしょうか?

  • 高校数学の問題です。

    1からnまでの自然数のうちで、nと互いに素であるものの個数をZ(n)とする。 ただし、自然数aとbが互いに素であるとは、aとbの最大公約数が、1になることである。 (1) Pを素数、kを自然数とするとき、Z(P^k)を求めよ。 (2)z(100)を求めよ。 どちらかだけでも良いです。困っています。 宜しくお願い致します。

  • 自然数の数列

    自然数からなる数列a[1],a[2],a[3],...,a[n],...で、 ・n→∞ のとき ω(a[n])→∞ ・任意のnについて φ(a[n]) | a[n]^2 をどちらもみたすものの例を教えて下さい。 ω(m)は自然数mの素因数の個数、 φ(m)はm以下でmと互いに素な自然数の個数、 k | m は自然数mが自然数kで割り切れる、 を表しています。

  • あまりの問題

    aとbを2以上の互いに素な自然数とし、b個の自然数1、2、...、b全体の集合をNとする また、自然数tに対して、tをbで割った余りをR(t)で表す (1)i∈N、R(ia)=1をみたすiが存在することを示せ とりあえずia=bq(iaをbで割ったときの商とする)+R(ia)だからR(ia)=ia-qより ia-q=1 ここからが全くわかりません!ヒントでもいいので教えてください!