• ベストアンサー

双対空間&写像

今、バナッハ空間を勉強していますが、線形汎関数のイメージがよくできません。 線形作用素はバナッハ空間からバナッハ空間への写像。 その中でスカラー値をとるものを線形汎関数。 双対空間とは線形汎関数の集合ということですが、線形汎関数とはどこからどこへの写像なのでしょうか?? どの参考書を読んでも、当たり前の事&基本的なこと過ぎて書かれていません(汗) 素人でもわかるように教えていただけると嬉しいです。 宜しくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.2

線形作用素は、ベクトル空間から、ベクトル空間への(線形)写像、 線形汎関数は、ベクトル空間から、その空間の基礎体への(線形)写像です。 基礎体の元を、そのベクトル空間の「スカラー」と呼びますが、 基礎体は、一次元ベクトル空間ですから、 線形汎関数も、線形作用素の一種ということになります。 双対空間は、線形汎関数の集合に、一次結合を (a f + b g)(x) = a f(x) + b g(x) によって定義したものです。 f,g が線形汎関数、a,b がスカラー、x がベクトルを表しています。 この一次結合によって、双対空間は、また別のベクトル空間になります。 大雑把な話、x を列ベクトル、f,g を行ベクトルと考えるようなモンです。 行ベクトルと列ベクトルの行列積は、一次関数になりますね?

GtoE
質問者

お礼

とてもわかりやすい説明をありがとうございます。 自分、読み足りなかったです!!

その他の回答 (1)

  • jmh
  • ベストアンサー率23% (71/304)
回答No.1

> 線形作用素はバナッハ空間からバナッハ空間への写像。 > その中でスカラー値をとるものを線形汎関数。 > 「バナッハ空間で定義されたスカラー値関数である」と言っているような気がします。

関連するQ&A

  • 双対空間について

    双対空間は、ベクトル空間Vの元xに対してKの元を対応させる写像に対して、和とスカラー倍を f + g: V → K; x → f(x) + g(x), cf: V → K; x → c f(x) のように定義するようですが、VからKへの写像全ての集合が(双対)ベクトル空間をなすということは、Vの1つの元に対して2通りの写像 f, g が定義される場合だけでなく、fとgがVの異なる元に対して定義されている場合についても、写像の和を定義しないと、いけないのではないでしょうか。 そうして初めて、「VからKへの写像の集合」の中の任意の2つの元(つまりVからKへの写像を2つ)を取ってきた時に、和が定義されますよね。 任意の2つの元に対して和とスカラー倍が定義されるというのが、ベクトル空間をなすための条件ですから、3行目、4行目の式だけでは双対空間がベクトル空間をなすことになっていないような気がするのですが・・・。 とはいえ、双対空間についての解釈は多くの方々が認めていらっしゃるので、恐らく私の考えのどこかが間違っているのだと思います。 説明が下手で申し訳ありませんが、私の考えのどこが間違っているのかご指摘下さい。

  • 双対空間のある証明

    線形空間Vの元xに対して、(V*)* (Vの双対空間の双対空間) の元Txを        Tx(f)=f(x) (fはV*の元)       で定義する。 このとき、写像 x→Tx は線形同型写像である事を証明せよ。 (Vはもちろん有限次元と仮定している。無限次元では正しくない。) という問題で、まず線形写像である事を示そうと思い、 Vの元からx,y 体Kからcを持ってきて、fは定義から線形写像だから                  f(x+y)=f(x)+f(y),f(cx)=cf(x)より、 Tx+y(f)=f(x+y)=f(x)+f(y)=Tx(f)+Ty(f) Tcx(f)=f(cx)=cf(x)=cTx(f) が成り立つ事から、Txも線形写像である事が示せることはわかったのですが、同型写像を示す時、これはTxが全単射である事がいえればいいわけですよね。 ここから先が全く分からなくて困っています。どなたか私に知恵を授けてください。

  • 双対空間と逆行列の関係について

    線形写像f:V→Wに対して、V*からW*(それぞれV,Wの双対空間)の線形写像tfにを考えると、この時tfが転置行列に相当するらしいのですが、なぜそうなるのか分かりません。 V=K^n,W=K^m、f(x)=Ax,Aはm×n行列とした場合に教えてください。

  • ヒルベルト空間について質問です

    大学の量子力学の授業でもらったプリントに ヒルベルト空間の双対空間は自分自身である。 ヒルベルト空間では線形写像fによってVとD(V)は同一視できる。 と書かれているのですがどういうことでしょうか? braベクトルとketベクトルの集合は異なると思うのですが、なぜ上のことが成り立つのか回答お願いします。

  • バナッハ空間Xと、その上の弱連続な等長線型写像のなすsemi grou

    バナッハ空間Xと、その上の弱連続な等長線型写像のなすsemi group(積は合成)Sがあるとします。 xをXの0でない元とするとき、Xの部分集合{ f(x): fεS }の弱閉包は、0を含むでしょうか? 長時間考えているのですが、どうしてもわかりません。どなたかお助けください。

  • 線形写像の例を探しています。

    Fベクトル空間Vの線形写像全体の集合をV'と表す事にする(体FはC又はRとする)。 つまり、V'の元はVからFへの線形写像。 PをF上の多項式全体の集合, C[0,1]を区間[0,1]で連続な関数全体の集合, R^3を3次元実数空間 に於いて、P'やC[0,1]'やR^3'の元としてどのような例が挙げられますでしょうか?

  • コホモロジー複体の具体例

    お世話になります。コホモロジー複体の具体例を教えてください。日本評論社の「コホモロジー」(安藤哲哉著)で勉強しています。p.50でベクトル空間の双対空間が出てきて、これは知っています。 境界作用素∂_pの「双対線型写像」とやらが理解できません。例えば、三角形ABCを考えて、 x = 3<AB>+2<BC>に対し、∂_p (x) = 3<A>-<B>-2<C>までは、分かるのですが、その双対線型写像とそのコホモロジー複体とはどんなものなのでしょうか。できれば、同じ様な具体例で教えてください。よろしくおねがいします。

  • 線形空間と写像、基底について

    線形代数の問題でちょっと分からないので分かる方教えてください。 問題は、 次の集合Xに対して V:=XからRへの写像全体のなす実線形空間 とする。Vの基底を見つけよ。 (1)X={x_1,x_2,x_3} (2)X={x_1,x_2,x_3,……,x_n} (3)X={x_1,x_2,x_3,……,x_n,……} です。写像の基底が分かりません。 よろしくお願いします。

  • アフィン写像について

    アフィン写像について アフィン写像の説明で、 アフィン写像は、アフィン空間の構造を保つような写像のことである。 とくに始域と終域が同じであるようなアフィン写像をアフィン変換という。 という説明があったのですが、 始域と終域が同じとはどのような事なのでしょうか? 同一集合(次元が同じ?)のことを指しているのでしょうか? また、私の認識では、アフィン変換が作用する先はベクトル空間だと思うのですが、 アフィン空間の構造を保つと言うからにはアフィン変換の作用先はアフィン空間なのでしょうか? ご回答よろしくお願い致します。

  • なぜ、双対問題(双対性)を考えるのですか?

    現在、線形計画法を勉強中で、よくわからないことがあります。 例えばこのような問題があるとしまして、 主問題 max Z = 6X1 + 4X2(例えば収益を最大にしたい…) s.t. 2X1 + X2 =< 70    3X1 + 4X2 =< 180    X1,X2 => 0 双対問題 min W = 70Y1 + 180Y2(例えば費用を最小にしたい…) s.t. 2Y1 + 3Y2 => 6    Y1 + 4Y2 => 4    Y1,Y2 => 0 主問題の最適な目的関数値 Z と、 双対問題の最適な目的関数値 W は、必ず一致することは、 シンプレックス法で実際に解いて確認できます。できました。 (参考書として読んでいる本の、標準形での証明・説明はいまいちわかりませんでした…。) ですが、 なんらかの収益を最大にしたい…という問題を定式化して解けば、 その収益を最大にしたいときの最適解・最適値を求められるなら 主問題の方だけ充分ではないのでしょうか? 上記の式の例ですと式の規模(?)に大した違いはないですが、 問題によって、双対問題に作り直した方が計算しやすい? といったようなメリットがあるのですか? なぜ、双対問題を考えるのか、どなたか分かりやすく教えて頂けませんでしょうか。