• 締切済み

連続な凸関数であるための必要十分条件

岩波数学辞典の凸関数の項で、実関数 f(x)がa≦xb≦で連続な凸関数であるための必要十分条件は、適当な単調増加関数p(x)で   f(x)=f(a)+∫p(x) と書かれる。(積分区間は、aからxです。) とありますが、その証明を探してもなかなか見つかりませんでした。 分かる方がいれば、よろしくお願いします。 。

みんなの回答

回答No.1

siegmund著「Measure and Integrals」(タイトル及び著者のスペルが間違ってる可能性高いですが)にちょうどその定理が載ってます。正確にはf'がほとんどいたるところ存在しp=f'としてあります。ただそのpはf'が可算集合を除いて単調増加であることよりsupによって拡張すれば岩波辞典の結果が得られます。

関連するQ&A

  • 凸関数は連続的微分可能?

    私は専攻が物理な門外漢なので、表現に不備がありまくりだと思うのですが、何とかよろしくお願い致します。 上に凸の関数が  f(λa+(1-λ)b) ≧ λf(a) + (a-λ)f(b)  a,b は任意の実数 λは 0<λ<1 を満たす任意の実数 と定義されているとすると、折れ曲がった部分を持つ関数(例えば、傾き2と傾き1の直線が連続に繋がってる点があるような。つまりそこでは微分不可)も上に凸の関数と言えます。 しかし、  上に凸の関数は、それが定義されている区間の上で連続的微分可能 という定理があるらしいのですが、連続的微分可能ということは、その区間の任意の点で微分可能ということが前提されているのではないでしょうか?しかし、それだと微分不可の点があってもいいという上の主張と矛盾してしまいます。 連続的微分可能は次のような定義で書いてあります。  ある領域で、すべての1階の偏導関数が存在して、それらがすべて連続である関数 1階導関数が存在して、それが連続であるためには、すべての点で微分可能でないとダメだと思うのですが、その辺に間違いがあるのでしょうか…? どうぞよろしくお願い致します。

  • 凸関数に関する問題

    関数fが区間Iで凸関数であることの定義は、 『 区間Iにおける全てのx,yに対して αf(x)+(1-α)f(y)≧f(αx+(1-α)y) 但し、0<α<1 』 であることとします。 この時以下が成り立つことを示せ。 (1)関数fが凸ならば,任意の3点x<y<zに対して f(y)-f(x)/(y-x)≦f(z)-f(x)/(z-x)≦f(z)-f(y)/(z-y) (2)関数fは内点で連続であることを示せ。 (1)の証明は出来ました。 かなり困っているので、どなたか(2)が分かる方、よろしくお願いします。

  • 「連続である」という条件の使い方

    f(x):0≦x≦1で連続な関数であるとき ∫xf(sinx)dx=(π/2)∫f(sinx)dx (積分区間はともに0からπ) という問題で、一応解けたのですが、 0≦x≦1で連続 という条件がどこで使われるのかがわかりません。 教えていただけませんか?

  • 連続関数, 解説もお願いします。

    関数f(x)に対しf(a)=aを満たす点x=aをf(x)の不動点という。 f(x)が閉区間[0,1]上の連続関数であり,その値域が閉区間[0,1]に含まれるとき,f(x)の不動点x=aが区間[0,1]に必ず存在することを示せ。 関連問題も解けるようになりたいので,解説もお願いします。

  • 二回連続微分可能な関数

    閉区間[a、b]を含むある開区間上で定義された実数値関数f(x)が二回連続微 分可能で、任意の点x∈[a、b]において、f''(x)≧0とする。このとき、次の 問に答えよ。 (1)任意のc∈[a、b]に対して、次の不等式が成立することを証明せよ。 (b-c)f(a)+(c-a)f(b)≧(b-a)f(c) (2)(1)の不等式で、真に不等号>が成立するのはどんな場合か。 (1)について。この不等式は、直線acの傾きより直線cbの傾きの方が大きいとい うことがわかれば導けますね。しかし、わかっている情報は f''(x)≧0である⇔f'(x)が単調増加→点aにおけるf(x)の接線の傾きより、 点bにおける接線の傾きの方が大きい、あるいは同じ、ということです。直線acと 直線cbは接線ではないけれど、このような判断を下せる根拠はどこにありますか ? (2)について。 『f'(x)が狭義単調増加のとき』でいいのでしょうか?それとも、この問題はも っと高度なことを聞いているのでしょうか?

  • 関数

    関数f(x)=x^3-3ax^2+3bx-2 が区間 0≦x≦1 で常に増加するとき、点(a,b)の存在する範囲を求めよ。 単調増加になればいいのだな、と考え微分をして f(x)=3x^2-6ax+3b とそこまでやったのですが、進まず… どうかよろしくお願いします。

  • 関数の連続性について

    関数f(x)が区間Iで連続のとき |f(x)|もIで連続であることの証明は どうやったらできるのでしょうか? x=aで連続ならx→aのときf(x)→f(a) というところまでは理解できたんですが 略解の ||f(x)|-|f(a)||≦|f(x)-f(a)| というこの式を導く方法がわかりません 詳しい証明方法がわかる方 回答をお願いいたします。

  • 増加関数?

    [問] f(x)=x-sinx は閉区間[0,π/2]で増加関数であることを証明せよ。 1.閉区間[0,π/2]で連続で、開区間(0,π/2)で微分可能でかつf'(x)>0ならば、f(x)は閉区間[0,π/2]で増加関数である。 2.f(x)がある区間で微分可能ならば、f(x)はその区間で連続である。 この2つの定理を利用して、 開区間(0,π/2)で微分可能を求めて、かつ、左端0で右側微分可能、右端閉区間π/2で左側微分可能。 ・・・・・・(ア) よって閉区間[0,π/2]で微分可能となり、連続となる。 次にf'(x)>0を求めて増加関数となる。 このように解いていこうと思うのですが、肝心の最初の(ア)の解き方が分かりません。どのようにすればいいのでしょうか? また、この方針はあっているのでしょうか?よろしくお願いします。

  • 凸関数

    R^nにあるx,yの内積を<x,y>=x´yとする。 ここでR^nの凸集合Cについて 関数f=sup{<x,y>|y∈C} とすると fが凸関数であることを凸関数の定義を使っても できません。 解けるにはどうやればいいのでしょうか?

  • 連続性のある関数を、中間値の定理に基づいて、実数解があることを示す方法がわかりません(ToT)

    微分積分を勉強しているのですが、全く理解できない問題がありまして・・・。 【問題】 方程式3x=2^x+2^-xは、区間(0,1)の中に少なくとも一つの実数解をもつことを示せ。 【解答】 f(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続であり、 f(0)=-2<0 f(1)=3-(2+1/2)=1/2>0 である。中間値の定理(※)により、 f(x)=3x-(2^x+2^-x)=0 であるようなxが、区間(0,1)の中に、少なくとも一つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ ※連続関数の中間値の定理 関数f(x)が、閉区間[a,b]で、連続でf(a)≠f(b)のとき、f(a)とf(b)の値kに大して、 f(c)=k である点cが、開区間(a,b)の中に少なくとも1つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ 読みにくいと思いますので、添付ファイルもご覧にいただきたいのですが、どうしてf(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続になるのでしょうか? 関数f(x)が「連続であるかどうか」を調べるには、例えば、f(x)をaで微分した「lim(x→a) f(x)」と、元の関数f(x)がx=aの時、すなわち「lim(x→a) f(x)=f(a)」、「f'(a)=f(a)」となる時、連続なんですよね? ですが、f(x)=3x-(2^x+2^-x)は、変数xが指数としてくっ付いてるので、どう微分していいのやら・・・。 なので、「全区間Rは連続であり」と言われても、全くピンときません(ToT) どうして「<0」「>0」など、0から目線で証明を進めているのかもわかりません(>_<) 皆様のお力をお借しいただきたい次第です。 よろしくお願いします<m(__)m>