• 締切済み

マクローリン展開

f(x)=1/1-x をマクローリン展開すると、 f(x)=1+x+x^2+x^3+・・・・+ x^(n-1) + 1/(1-θ)^(n+1) *x^n と参考書に載っていました。 最後の項は、x^n と思ったのですが、『1/(1-θ)^(n+1) 』とは 何なんでしょうか? テイラーの定理のところで、θがでてきていて、実はそこから躓いています。 詳しい解説お願いします.

みんなの回答

  • b_bb
  • ベストアンサー率23% (4/17)
回答No.2

#1さんのおっしゃる通り剰余項ですね。 平均値の定理でももちろんわかりますがそれというよりは、一段階簡単なロルの定理(平均値の定理を導き出すために使うもの)でも理解可能なはずです。 ちなみにその剰余項がn→∞で=0となればテイラー展開可能ということになります。

kokko28
質問者

補足

#1さんと併せて…。 回答ありがとうございます。 平均値の定理を見返してみました。 やはりそこからつまずいているのでしょうか。 その先に「コーシーの平均値の定理」があり、 (f(b)-f(a))/(g(b)-g(a))=f'(c)/g'(c) a<c<b となるcが存在する。 このcは、c=a+θ(b-a)(0<θ<1)…(*) で表される。 (*)の式がよくわかりません。 どこから復習し直せばよいでしょうか?

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

その剰余項は平均値の定理から出てきます. だから, 平均値の定理が OK なら OK のはず.

関連するQ&A

  • マクローリン展開について

    マクローリン展開について 以前あるサイトで質問したのですが、その回答がよくわからなかったのでこちらで質問します。 1/1-x についての級数展開の質問になります。 1/1-xをマクローリン展開すると、1+x+x^2+x^3+x^n+・・・・とないっていきますが、この時の収束がわかりません。 以前質問したときにこんな回答がありました。 f^(n)(x)=n!/(1-x)^n, f^(n)(0)=n! Sm(x)=Σ[n=0,m-1]f^(n)(0)x^n/n!=Σ[n=0,m-1]x^n (級数Σ[n=0,∞]x^nのm部分和) f(x)にマクローリンの定理を適用したときの剰余項をRm(x)とすると f(x)=Sm(x)+Rm(x) と表わせる。 |Rm(x)|=|Sm(x)-f(x)| =|Σ[n=0,m-1]f^(n)(0)x^n/n! -1/(1-x)| =|Σ[n=0,m-1] x^n - 1/(1-x)| =|(1-x^m) / (1-x) - 1/(1-x)| =|x^m/(1-x)|…☆ しかし、f^(n)(x)=n!/(1-x)^n, f^(n)(0)=n!というのが分かりません。 どこからこのような式はでてくるのでしょうか? また、剰余項というのは、級数は無限には実際計算できないわけで、例えばn=5とかで計算を終わらせる必要がありますが、 その時n=6以降の項は切り捨てることになります。 その切り捨てた項が剰余項となるのでしょうか? 余った項とかくので。 収束条件と剰余項がどういう関係があるのかはいまいちわかりませんが。

  • マクローリン展開

    f(x)=(1+x)^N,ここでNは整数です。 この式をマクローリン展開し、ニュートンの二項定理の式が導かれることを示したいです。

  • テーラー展開とマクローリン展開

    独学なのでいまいちはっきりわからなく。。。 f(x)のテーラー展開 Σ(n=0~∞) (☆/n!)(x-a)^n (☆はf(x)をn回微分したものにaを代入した値) 1)マクローリン展開はテーラー展開の一種である。(テーラー展開のaに0を代入したものをマクローリン展開という) 2)aに代入する値は別に何の数字であっても展開はできる 3)テーラー展開は基本的に無限回微分可能な関数をf(x)=多項式の形に直すのに使われる という理解でいいのですか? 間違ってたら訂正お願いします。 またこれはいつ使うのでしょうか。。?

  • テーラー展開(マクローリン展開)について

    テーラー展開についての質問です。 問題=============================================== 1/cos x のx=0を中心とするテーラー展開を4次の項まで求めよ。 =============================================== この問題の解答例として、以下のような解説があったのですが、 わからない点が有ります。 <解答例> cos x のマクローリン展開は、 cos x = 1 - x^2/2! + x^4/4! + … ( |x| < + ∞)であるから、 1/cos x = 1/( 1 - x^2/2! + x^4/4! + …) ここで、  1/(1 - x) のマクローリン展開が Σ{n=0→+∞} x^n で与えられるので、 これを利用して、 1/cos x = 1 + (x^2/2! - x^4/4! +…) + (x^2/2! - x^4/4! + … )^2 + …      ー(1) = 1 + x^2/2 + 5x^4/25 +…     ー(2) となる。 ここで疑問なのは、 1/(1 - x) のマクローリン展開は、|x|<1 の条件が成り立つ時に限り収束するので、 適用できるわけじゃないですか? (1)から(2)のような形にする場合に、 |(x^2/2! - x^4/4! +…)| < 1 となっていないのに、このような展開をしてもいいのでしょうか? 具体的には、cos x は xの値によって -1 <= cos x <= 1 まで取り得るので、 cos x のマクローリン展開の初項が1ということは、 それ以下の項の和がxの値次第で -2程度になることも考えられると思うので このような展開をしてはいけないと思うのです。 当方 テーラー展開についてよく熟知していないため、 ご指導お願いします。

  • マクローリン展開

    マクローリン展開の問題で 与えられた関数の次数より、問題条件の微分回数が多いとき、 例えば、「x^2 にマクローリンの定理を適用(n=3)する」場合、 そもそも微分が2回までしかできないので、 マクローリン展開答は、 f(x)= f(0) + f'(0)x/1! + f"(0)x^2/2! = x^2 で、よろしいでしょうか? よろしくお願い致します。

  • マクローリン展開の問題について

    いまいち納得いかない問題があるので質問です。 √(1+x)のマクローリン展開は =1+1/2x-1/(2*4)x^2+・・・+(-1)^(n-1){(1*3・・・(2n-3)}*x^n/{(2*4・・(2n)}となると書いてあるります。確かに自分で拡張された二項定理から求めた一般式と↑の一般式は一致するのですが、 一般式のnにn=1,n=2・・・を代入して得られる値と、第二項、第三項・・の値は符号が逆になってしまいます。 これが何故こうなるのか納得できません。 どなたかご解答お願いします。

  • マクローリン展開

    マクローリン展開 x^2 にマクローリンの定理を適用する (n=3)場合 f' (x)=2x → f(0)=2 f''(x)=2 → f(0)=2 f'''(x)=0 → f(0)=0 ここで第3項目 R3(x)= f'''(θx)x^3/3! あたりから 解答に曖昧な点があります。 よろしくお願いします。

  • マクローリンの定理が分かりません!!

     マクローリンの定理について、よく分からない部分があります。  次の関数にマクローリンの定理を適用した場合、どうなるのでしょうか??   f(x)=(1+x)^α f(x)=log(1+x) f(x)=1/√(1+x) f(x)=√(1+x) f(x)=e^(2x)  ただ、2番目のf(x)=log(1+x)について、自分で解いたものと、ある問題の解答と見比べてみたのですが・・・  解答・・・log(1+x)=x - x^2/2 + x^3/3 + … + (-1)^(n-2)x^(n-1)/n-1 + (-1)^(n-1)x^n/n(1+θ)^n  となっていました。  でも、自分で解いたら、最後の項(nの項)が (-1)^(n-1)x^n/n(1+θx)^n と、θの前にxがついてしまいます。  この解答は、たまにミスプリントがあるので、本当がどうなのかわかりません。もし、この解答があっているなら、どうしてxが消えるのでしょうか?  いそいでいるので、早く回答いただけると助かります。  よろしくお願いします。

  • マクローリン展開について

    マクローリン展開について マクローリン展開の公式は覚えているのですが、実際にマクローリン展開しx^4の項まで求めよ、という問題が出ると解けません。 f(x)=sinxをx^4までマクローリン展開すると、答えがx-(x^3/3!)+・・・・となっていました。 x^4までとはどのように計算して行ったら上のような回答が出るのでしょう?

  • マクローリン展開について

    マクローリン展開について テーラー展開で y=√x+1を5次の項までをしたいのですが、 yの3回微分あたりからくしゃくしゃしてしまって出来ません。 どうか、ご教授お願いします。 この関数ではこういうこともできるよ!みたいな裏技みたいなものもあれば嬉しいです。 y'=1/2√x+1 y"=-1・(2√x+1)'/(2√x+1)^2 =-1/4(√x+1)^3