• 締切済み

勾配ベクトルについて

勾配ベクトルと方向微分についての問題です。(2変数の場合) 平面状の点(x0、y0)と直線ax+by=cの距離dは d=|ax0+by0-c|/√a^2+b^2  ・・・★  となる事を示す。 直線ax+by=cを平面z=ax+byの等高線(高さc)と考えるとき、 (x0、y0)を通り、ax+by=cに平行な直線は ax+by=(1) であるので、2つの等高線 ax+by=cと ax+by=(1)との高さの差(正の値)は(2)となる。 2変数関数 ax+byの勾配ベクトルの大きさ(3)は(4)を表すから、点(x0、y0)と直線ax+by=cの距離をdとすれば、 (3)=(6)/(5)となる。 これにより★が成り立つ。 (4)には言葉が、それ以外は数式が入るようです。 どなたか、よろしくお願いします!!

みんなの回答

回答No.2

xy平面が地図と思えば, z=f(x,y)=ax+by の値によって高さが決まっていて等高線が引かれていると見なせるので, 直線ax+by=(定数) の法線ベクトルの1つとしてベクトル→n=(a,b)が取れて, 文脈だと, これをどうやら「勾配ベクトル」と定義しているようです. [大きさ|→n|=√(a^2+b^2)] 『勾配』=傾き=「水平距離で単位長さ進んだ時の, 高さの増加量(変化量)」で, (端的にいえば,水平距離で1m進むと10cm高くなるといった感じでしょう.) 一般に, ベクトル→p=(Δx,Δy)だけ進むと, 内積(→n)・(→p)=aΔx+bΔy だけ高さが変化する(正,0,負どれも取り得る)と言えます. 質問者さんの(1),(2),(3)は良さそうです. ただ, (3)は安直に, 勾配ベクトル→n=(a,b)の大きさ(|→n|=)√(a^2+b^2) でいいはずです. 問題の(4)は「単位距離進んだ時の高さの変化量の大きさ」(「増加量の大きさ」でも良い)などと書くのでしょうか.他にも表現はあるかも. すると, (高さの差(≧0))=(勾配ベクトルの向きに有効に進んだ距離[変位の勾配ベクトルに平行な成分の大きさ])・(勾配の大きさ) [一般の変位だと内積aΔx+bΔyとなることは先述]より |ax0+by0-c|=d・√(a^2+b^2) ・・・(*) から d=|ax0+by0-c|/√(a^2+b^2) の方が自然な気もしますが,出題者の意図は勾配の定義より 『勾配』=(高さの増加量)/(水平距離) から √(a^2+b^2)=|ax0+by0-c|/d と言いたいようで, 結局,(5)=d,(6)=|ax0+by0-c| なのでしょう.

namibito5
質問者

お礼

ありがとうございます。 最後のほうがよく分からなかったのですが、理解できました。 細かい説明ありがとうございました。

  • jusa
  • ベストアンサー率27% (32/118)
回答No.1

宿題だかレポートだか知りませんが、 問題の丸投げはやめて下さい。迷惑です。 まずあなたが投稿前にどれだけのことを考えたのか、 正解不正解は別にして、あなたなりの答えを示して下さい。

namibito5
質問者

補足

すみません、不十分でした。 私が考えたところまで書いてみたいと思います。 間違えや、もっと良い方法があったら補足してください。 まずax+by=cに平行で、(x0、y0)を通るという事から計算すると、 その直線はax+by=ax0+by0と表せる。 このことから、高さの差は|ax0+by0-c|となる。 2変数関数 ax+byの勾配ベクトルの大きさは、a^2+b^2/√a^2+b^2=√a^2+b^2となる。 分からないのがここからで、 この√a^2+b^2が何を表しているのかがよく分かりません。 上の問題からすると(4)のことです。 √a^2+b^2が何を表しているのかが分からないため、(5)・(6)も、どう求めていいのか分からなくなりました。 以上が私の答えです。 間違い指摘・補足、よろしくお願いします。

関連するQ&A

  • ベクトルについて

    問題 (a,b)≠(0,0)とする (1)xy平面上の任意の直線の式はax+by+c=0の形で表せることを示せ (2)逆に、xy平面で、ax+by+c=0を満たす点(x、y)の集合は直線を表すことを示せ (3)直線L:ax+by+c=0とベクトル(a,b)(←ベクトルの成分表示がうまくいきません。申し訳ないです。上がaで、下がbって事です) (1)は分かりますが、その逆の(2)、(3)が分かりません。教えて下さい。

  • 空間のベクトルの問題です。

    (1)点A(-2,3,2)を通り、直線(x-1)/4 =(y-2)/5=-z+2を含む。 この問題は、まず私は、媒介変数tを用いて、直線の式を変形しました。 すると、x-1=4t。 y-2=5t、z-2=-t これより、x=4t+1、y=5t+2、z=-t+2 t=0の時と、t=1の時を考えて、 (x、y、z)=(0.2.2)と(5,7,1)となりました。 これに、点A(-2,3,2)を通る平面を考えればよいと考えました。ax+by+cz+d=0の式に上の三つをそれぞれ代入したら 2b+2c+d=0 , 5a+7b+c+d=0 , -2a+3b+2c+d=0 これら三つの式が得られたのですけど、このあとの計算が何度やってもできませんでした>_< 今までは、文字が4つある式の場合は、4つの式で連立方程式を求めて、abcdを求めていたのですが、空間のベクトルから、三つの式で作るのを学んでから、思うようにできませんでした>_< 誰か教えてください。 (2)3点A(-1、-4,0) B(-2,0.2)、C(0.1.1)を通る。 (2)は、これら三つを通るという平面なので、これも三つそれぞれ 平面の公式ax+by+cy+zに代入して、 -a-4b+d=0 , -2a+2c+d=0 , b+c+d=0 とまでは求まったのですけど、 この後の計算ができませんでした>_<;;; どなたか教えてください。よろしくお願いします!!

  • ベクトルでもこの証明をやったのですが・・・

    点(x1,y1)と直線ax+by+c=0との距離dは、 次の式で与えられることを証明せよ。    |ax1+by1+c| d=────────────    √(a^2+b^2) ベクトルの範囲での証明でもあった気がするのですが・・・。

  • 点と直線の距離をベクトルで証明

    以前同じ問題で質問しましたが、また疑問点がでてきたので、質問します。問題は、 点P(x0,y0)と直線l:ax+by+c=0の距離dは、次の式で与えられることをベクトルを用いて示せ。 d=|ax0+by0+c|/√(a^2+b^2) Pから直線lへ垂線を下し直線lとの交点をH(x1,y1)とするHP→(HPベクトルをこのように書きます、お願いします。)=(x0-x1,y0-y1),直線lの法線ベクトルn→=(a,b)はどちらも直線lに垂直だから、 HP→//n→である。したがって、 HP→・n→=|HP→||n→|cos0°= |HP→||n→|。または HP→・n→=|HP→||n→|cos180°= -|HP→||n→|・・・(1) より|HP→・n→|=|HP→||n→|よってd=|HP→|=|HP→・n→|/|n→|= |a(x0-x1)+b(y0-y1)|/√(a^2+b^2) =|ax0+by0-(ax1+by1)|/√(a^2+b^2) 点Hは直線l上の点であるから、 ax1+by1+c=0 よってc=-(ax1+by1) ゆえにd=|ax0+by0+c|/√(a^2+b^2) 疑問があるのは(1)のところで、1つは法線ベクトルは2つあるか? 2つめは、法線ベクトルに対して直線の反対に点Pがあるときに HP→・n→=|HP→||n→|cos180°が成立するか? 添付した図で教科書にはP? やn→?は描かれていませんでした。 自分の考えがまちがっていたら訂正お願いします。

  • ベクトル

    空間に、4点A(1,1,1),B(3,4,2)C(2,3,2),D(2,2,4) があるとき (1)三角形ABCを含む平面上に任意の点P(x,y,z)をとるとき、x,y,zの間に成り立つ関係式を求める。 (2) 点Dより(2)の平面におろした垂線の長さを求める問題で (2)は分かったので(3)について教えてください、 (1)は 2x-y+z=dから点Aを代入して d=2 関係式は2x-y+z=2 ●点a,b,c)から平面Ax+By+Cz+D=0 への距離の公式は |Aa+Bb+Cc+D|/√(A^2)+(B^2)+(c^2) 点Oから平面ABCへの距離が 上の公式にDを代入するときどうして-2を代入するのですか? (1)でdを求めたときはd=2でしが。 なぜ代入するときにマイナスがつくのかがわかりません。

  • 3次元での点群に対する最小二乗法での平面の算出について(点と平面の距離

    3次元での点群に対する最小二乗法での平面の算出について(点と平面の距離。残差ではない。) -- 点と平面のZ軸方向の距離(残差)の二乗和を最小とする場合には、 平面をax+by+c=zとして、Σ(ax+by+c-z)^2をa,b,cのそれぞれで偏微分して それを=0とした連立方程式を解くことで解を得ることが出来ました。 また、式の形も、ある点のxとyを平面の式へ代入した際の値と、点のz値の差分を見ており、 簡単に納得のできるものとなりました。 これに対して、点と平面の距離(空間的な最小距離)の二乗和を最小とする場合には、 どのような流れで計算すれば良いのでしょうか? 点と平面の距離は|Ax+By+Cz+D| (A,B,Cは単位ベクトル)として求まりますが、 これをどう使うのかが分かりません。 Σ(Ax+By+Cz+D)^2をA,B,C,Dのそれぞれで偏微分して=0としても、 定数項が無いため、連立方程式の解がすべてゼロとなってしまいます。 強引に、Σ(A'x+B'y+C'z+1)^2として変形させて解いてみましたが、 得られたA',B',C'からA,B,C,Dに戻すと、Dがきちんと出ませんでした。(他についても怪しい。) こういった状況に迷い込んでしまい、どう考えるのが良いのか分からなくなってしまいました。 指南いただけませんでしょうか?

  • 空間ベクトルなのですが・・・

    1. 3点、A(2,5,1)、B(0,3,7)、C(6,0,4)があ    り、点Dを選び、四角形ABCDが平行四辺形にしたいのですが、    Dの座標をどのように設定したらいいのでしょうか? 2.次の三点が一直線上にあるように定数、a,bの値を定めよ。   (-3,2,-1)、(2,-5,3)、(a,b,-5) 3.aベクトル=(-2,-1,3)、bベクトル=(1,3,2)   のとき、次の2式を同時に満たすベクトル、   xベクトル、yベクトルの成分を求めよ。   3x+y=a,7x+3y=b (ベクトル記号“→”は省略してます) ご回答の方、お願い致します。 **************** 4.平面ax+2y-z=6と次の方程式で   あらわされる直線が平行となるように定数aの値を定めよ。   x=1-t,y=-1+5t,z=4+7t   この問題については、自分、法線ベクトルを用いてやったら、できたのですが、なぜ、平行なのに、法線ベクトルを使うのでしょうか? よくわかりません、教えてください。

  • 点と直線の距離

    次の点と直線の距離を求めよ (1)点(-3,5)と直線x=1 (2)点(1,2)と直線y=2x-5 なのですが、点と直線の距離の公式 点p(x1,y1)と直線ax+by+c=0の距離dは d=|ax1+by1+c|. ÷√a^2+b2 なのは分かっているのですが どのように問いていいのか分かりません(。-_-。) 解説をよろしくお願いします><

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 空間ベクトルの問題です

    次のような問題の答えがわかりません。正解をお願いします。 2変数関数f(x,y)の等高線とは、f(x,y)=一定という条件で定義される曲線である。ただし、勾配ベクトルが0にならないところでだけ等高線を考えるとする。 第一象限(x>0,y>0)において、次の関数f(x,y)=x^3・y^3の等高線と直交する等高線をもつ関数h(x,y)を求めよ。 類似問題の解説を読んだのですがわかりませんでした。よろしくお願いします。