• 締切済み

確率

縦5マス、横5マスの碁盤目状の図がある。左下の端をA,Aから横に3マス、縦に2マスいったところの点をB,Aから横に2マス、縦に3マスいったところの点をCとする。Aを出発点として、さいころを投げて1,2の目が出れば右に1区間,それ以外の目が出れば上に1区間ずつ進む。  (1)点Bに達する確率PBを求めよ。(答え:40/243)  (2)点Cに達する確率PCとPBはどちらがおおきいか。(答え:PCが大きい) 解き方がわかりません。問題から図を想像するのはむずかしいかもしれないですが、回答よろしくおねがいします!!

みんなの回答

回答No.3

こんにちは。 まず、Bに到達するには、右に3回、上に2回行けばいいことに なります。 右に一目進むには、1か2のどちらかが出ればいいので、確率は1/3 上に一目進むには、3,4,5,6、が出ればいいので、確率は2/3ですね。 さて、右に3回、上に2回進むには、5回のうち、どの2回が上かで5C2 ですから、 確率PB=5C2×1/3×1/3×1/3×2/3×2/3 =40/243 となります。 同様にCに到達する確率は PC=5C2×2/3×2/3×2/3×1/3×1/3=80/243 となりますから、このほうがPBより大きいことが分かります。 イメージ的にも、(1,2)だけが出るより、(3,4,5,6、) が出るほうが確率として大きいですもんね。 PCはPBのちょうど倍になります。

回答No.2

#1ですが(2)の別解の補足です. ともに正であることがはっきりしている量どうしの大小を比べるとき, 例えば PC/PB を計算し, PC/PB が >1,=1,<1 に応じて順にPC>PB, PC=PB, PC<PB というように大小を比較するやり方があります. 今のように,ともに正であるPCとPBの大小関係を調べたい(が,個々の値そのものは分からなくても良い)といった場合だと,  PC/PBを計算するのだが, 5C2は共通,それぞれの分母の3の5乗(つまり3の-5乗)も共通,2だけPCの方が1つ多い....だから結局,比PC/PB=2で1より大きいからPC>PB がいえる...と計算しているので,知っておくと役に立つこともあるでしょう.今はまだそれほど必要性はありませんでしたが. 特に,2項係数nCrが絡んだ計算とかだと,それぞれの値は求めにくいが,隣り合う2項どうしの比は簡単な形になって計算しやすいという場合があります.

回答No.1

図を見ながら読んで下さい. 横に行く確率は1/3, 縦は2/3です. (1)AからBへは,全部で5ステップ, ただしそのうち →→↑→↑などのように縦が2回(横が3回). すると,PB=5C2*(2/3)^2*(1/3)^3=40/243 (2)AからCへも,全部で5ステップ, ただしそのうち横が2回(縦が3回). すると,PC=5C2*(1/3)^2*(2/3)^3 もちろん,これを計算してPBと比べても良いですが,それはやってみて下さい. 別解で,どちらも正より,比を見ると PC/PB=2>1 なので PC>PB である.

関連するQ&A

  • 最短距離を、場合の数でするか確率でするかの違い。

    Cでおなじみの最短距離の問題。(*長くてグダグダです) 縦に3区間、横に5区間ある格子状の道があり、その一番左下の端をP、一番右上の端をQとする。 AはPからQへ、BはQからPへ共に最短距離を等しい速さで進む。各分岐点での進む方向を等確率で選ぶとき、AとBの出会う確立を求めよ。 PからQ(またはQからP)を最短距離で進むなら、全体で8区間(縦3、横5)選ぶことになるので、8÷2=4区間進んだ所でAとBは会うことになる。 出会う場所をPから 横:1 縦:3 をa 横:2 縦:2 をb 横:3 縦:1 をc 横:4 縦:0 をd と置く。 模範解答 Aは縦、または横をそれぞれ1/2の確率で選んで進むので、 a,b,c,dを通る確率は、 d=(1/2)の四乗=1/16 c=(1/2)の四乗×[4]C[1]=1/4 b=(1/2)の四乗×[4]C[2]=3/8 Aはabcdのいずれか1点を必ず通り、かつ2点以上を通ることはないので、 a=1-{(1/16)+(1/4)+(3/8)} =5/16 同様にBも考え、 a=(1/2)の四乗=1/16 b=(1/2)の四乗×[4]C[1]=1/4 c=(1/2)の四乗×[4]C[2]=3/8 d=5/16 以上より (1/16)×(5/16)+(1/4)×(3/8)+(3/8)×(1/4)+(1/16)×(5/16)=29/128 ・・・答    終 私の考え方は、 Aには aを[4]C[1]×[4]c[0]=4通り bを[4]C[2]×[4]c[1]=24通り cを[4]C[1]×[4]c[2]=24通り dを[4]C[0]×[4]c[1]=4通り の進み方があり、 同様にBには dを[4]C[1]×[4]c[0]=4通り cを[4]C[2]×[4]c[1]=24通り bを[4]C[1]×[4]c[2]=24通り aを[4]C[0]×[4]c[1]=4通り ある。 全体は56の二乗=3136通り 4の二乗×2+24の二乗×2/3136 回答の分母の128に何をかけても3136にはなりませんので間違ってますね。 知りたいことは、 私の考え方の誤りと、 模範解答のAはaを1-{(1/16)+(1/4)+(3/8)} =5/16で進むとなっているが、(1/2)の4乗×[4]C[1]=1/4ではないのか、 ・・・私はAがBと出会い、その後Qに行く進み方も考えてますが、 AとBは出会えさえすれば、そこからQに行く場合の数は関係なかったり・・・?(PからQまでではなく、Pから出会う場所までの場合の数ではないか) 以上です。お願いします。

  • 確率 最短距離の問題

    考えてみましたが、よくわからないので教えてください。 横5マス、縦6マスの碁盤の目のようになっている道の最短距離の道順の総数の求め方は 11C5=11C6=462通り とあります。同じ物を含む順列の考え方を使えば普通にわかるのですがこのコンビネーションを使ったやり方がわかりません。 よろしくお願いいたします。

  • 論理的にこの確率の問題がわかりません

    右の図のような碁盤の目の道路(各碁盤の目は東西間、南北間の距離はすべて等しい)がある。 甲、乙2人が、それぞれA地点、B地点を同時に出発し、甲はBに、乙はAに向かって同じ速さで進むものとする。 ただし、2人とも最短距離を選ぶものとし、2通りの選び方のある交差点では、どちらを選ぶかは1/2の確率であるものとする。 このとき、次の確率を求めよ。 1甲がC地点を通る確率。 僕の解き方はまず確率とは場合の数を全事象で割ったにすぎないのでまず、甲がC地点を通る場合の数を考えます。 よって3C1×4C2=18通り よって全事象は7C3=35通り よって18/35としました。 しかし間違いでした。 なぜこのとき方では駄目なのでしょうか??? 論理的に教えて下さい。

  • 数学の確率の問題です!

    A, B 2つのさいころを同時に投げて、さいころのAの出る目の数をa さいころのBの出る目の数をbとします。 このとき、a/2+b/6の値が整数になる確率を求めなさい。 という問題です。 1つ1つあてはめて答えはあっていたのですが、時間がとてもかかってしまったので、解き方を教えてくれると嬉しいです! ちなみに答えは (a, b)₌(1, 3), (2, 6), (3, 3), (4, 6), (5, 3), (6, 6) の 6通りあり 確率は6/36となり1/6が答えとなってます

  • 3つのサイコロを投げた時の確率

    「A、B、Cの3つのサイコロを同時に投げ、出た目をそれぞれa、b、cとする。このとき、(a-b)(b-c)(c-a)=0となる確率を求めよ。」 こちらの問題を現在やっていて、答えは「4/9」とあるのですが、答えの導き方がわかりません。 そもそも、『(a-b)(b-c)(c-a)=0』という式が、具体的にどういう目が出た状態なのかがつかめていません。 「AとB、BとC、CとAが同じ目になる確率」ということなのでしょうか? この問題の解き方が分かる方がいましたら、教えていただけると嬉しいです。

  • 確率

    1目盛りが1cmの数直線があり、数直線上のー2の位置に点A、3の位置に点Bがあります。正しく作られた大小の2つのさいころを同時に1回投げます。大きいさいころの出た目の数をaとして、点Aを数直線上を正の方向に2acmだけ動かします。また、小さいさいころの出た目の数をbとして、点Bを数直線上を正の方向にbcmだけ動かします。 これについて、次の(1)・(2)に答えなさい。 (1)Aの座標がBの座標よリも大きく、AB=2cmのとき、bをaの式で表しなさい。 (2)AB=5cmとなる確率を求めなさい。 (1)はわかりました。(2)が分かりません。(1)を利用するのでしょうか?数直線で考えたのですが、わかりません。答えは1/9です。 求め方を教えてください。

  • 【高校数学】場合の数・確率

    縦3×横5マスの左下からAが、右上からBがスタートする図があり、 A,Bの出会う確率は? という問題で、 4×1+6×4+4×6+1×4/15×15として出すのが典型的誤答、と言われました。 お恥ずかしながらこの式の(特に分母の)意味が分かりません、どなたか解説お願いいたしますσ(^_^;)

  • 確率

    正四面体の4つの頂点をA、B、C、Dとする。次のルールに従って、頂点Aから他の頂点へ移動する思考を考える。 <ルール> 各頂点ごとに、サイコロの6つの目から3つの異なる目を選び、サイコロを振ってそれらの目が出たらどの頂点に移動するかあらかじめ指定しておく。ただし、異なる目には異なる頂点を指定する。サイコロを振って移動する目が出なかったときには、移動しないものとする。 ・頂点Aからサイコロを3回振ったとき、頂点Bに移動している確率は? 他の小問は分かったのですが、これだけ計算が合いませんm(_ _)m  ちなみに答えは 13/54 です

  • 確率のテストがあったのですが

    確率のテストがあったのですが どうしても解けない問題が2つあったのでよければ見てみてください。 (答えを教えてくれないので答えがわかりません。) 1) 5個のさいころを振って 出た目の数a,b,c,d,e の積(a*b*c*d*e)が 6の倍数になる確率を求めよ。 2) A君とB君が1からnまでの異なる数字が書いてある n枚のカードから1枚ずつ引いてそれぞれの数をa,bとするときa>2bとなる確率を求めよ。 という問題です。どちらか一つでもいいので返答お待ちしております。 1の場合6でない余事象とかから考えるのでしょうかね?

  • 関学大入試、余事象の確率の問題です

    偶数の目が出る確率が2/3であるような、目の出方にかたよりのあるサイコロが2個あり、これらを同時に投げるゲームをおこなう。両方とも偶数の目が出たら当たり、両方とも奇数の目が出たら大当たりとする。このゲームをn回繰り返すとき、 (1)当たりまたは大当たりが少なくとも1回は出る確率を求めよ (2)当たりと大当たりのいずれもが少なくとも1回は出る確率を求めよ という問題なのですが (1)の正解が、1-(4/9)^n (2)の正解が、1-(8/9)^n-(5/9)^n+(4/9)^n ではあるのですが ベン図で考えると、大当たりが少なくとも1回は出る確率(Aとする)と当たりが少なくとも1回は出る確率(B)とするがあり、A∪Bが(1)の答えで、A∩Bが(2)の答えで、A∪Bバーがハズレということになると思うのですが、 大当たりが1回も出ない確率(Aとする)と当たりが1回も出ない確率(Bとする)というベン図では答えは出ますでしょうか?