• ベストアンサー

2^(n-1)とn!との大小関係

tarameの回答

  • ベストアンサー
  • tarame
  • ベストアンサー率33% (67/198)
回答No.3

二項定理を使うなら、こうかな。 2^(n-1) =(1+1)^(n-1) =Σ[k=0,n-1] (n-1)!/{k!(n-k-1)1} ここで、k!(n-k-1)!≧1 より (n-1)!/{k!(n-k-1)!}≦(n-1)! だから 2^(n-1) ≦Σ[k=0,n-1] (n-1)! =(n-1)!×n=n! よって、2^(n-1)≦n!

vigo24
質問者

お礼

おおっ! こんなに簡単に・・・! 悩んでたのがバカみたいです。 本当にどうもありがとうございました。 助かりました!

関連するQ&A

  • (1+h)^n≧1+nh+{n(n-1)/2}h^2

    h>0のとき(1+h)^n≧1+nh+{n(n-1)/2}h^2 これを示すのに「右辺は二項定理で展開して昇べき順で並べたときの最初の3項」ってことでは証明になりませんか? 数学的帰納法でしょうか? あと、0<x<1のときlim[n→∞]nx^n=0 を先の不等式を用いて示せという問題がわかりません。 一見明らかにみえますけど。

  • {9^(n+1)-8n-9}/64になる証明

    {9^(n+1)-8n-9} (n=正の整数) という数字が64で割れることを二項定理を使って証明したいのですが、分かりません。 自分でやってみたところ、 (1+8)^n=…… ↓ 9^n-8n-1=64k ↓ 9^(n+1)-8n*9-9=64k*9 というところまで、できましたが次何すればいいのかわかりません。 回答お願いします。

  • An={1+(1/n)}^n (n=1,2,3,…)について…(続く)

    【問題】An={1+(1/n)}^n (n=1,2,3,…)につい数列{An}は単調増加であることを示せ。すなわちAn<A(n+1)を示せ。またAn<3であることも示せ。 (※ただし,二項定理を利用せよ。) よろしくお願いします。 二項定理にあてはめてみたのですが…そっからさっぱりです^^;

  • f(n)=(1)^n+(2)^n+(3)^n+(4)^n

    nは自然数 f(n)=(1)^n+(2)^n+(3)^n+(4)^n f(n)を5で割った余りをr(n)とする。 (1)r(n)は g(n)=(1)^n+(2)^n+(-2)^n+(-1)^n  を5で割った余りと等しいことを示せ。 (2)r(n)=0を満たすnをすべて答えよ。 (1)は f(n)-g(n)=5t と置いて、数学的帰納法で解くのが良いのでしょうか? f(n)-g(n)=(3)^n+(4)^n-(-2)^n-(-1)^n=5t n=1のとき f(n)-g(n)=3+4+2+1=10 → OK n=kの時成立すると仮定して n=k+1の時 (3)^(k+1)+(4)^(k+1)-(-2)^(k+1)-(-1)^(k+1) =(3)^(k+1)+4{5t-3^k+(-2)^k+(-1)^k}-(-2)^(k+1)-(-1)^(k+1) =-3^k+20t+6(-2)^k+5(-1)^k ここで -3^k+6(-2)^k を帰納法で5の倍数と証明して f(n)-g(n)=5t と証明できる。 他の証明方法はないのでしょうか? (2)はどのようにすればよいか分かりません。 教えてください。 お願い致します。

  • 大小関係

    実数の大小関係を複素数の範囲まで広げられないことを証明するにはどうしたらいんでしょう? ヒントでもいいんでよろしくお願いします。

  • 証明:  n≧4のとき、2^n<n!

    次の等式を証明せよ。 n≧4のとき、2^n<n! という問題があったのですが、これを帰納法を使わないで証明を与えるとするなら、どのような方法が考えられますか? できれば参考書的でないものがいいのですが・・・。 チャートでは 2^n<n!⇔n!/2^n>1 と変形して解いていました。 きれいな形をしているだけにさまざまな方法があると思いますがどなたかご教授ください。

  • (n!)!は(n!)^(n-1)!で割り切れる

    (n!)!は(n!)^(n-1)!で割り切れる このことを数学的帰納法で示そうと思ったのですが、うまくいきません。 どのように示せばよいでしょうか?

  • Sum(n)=1/2n(n+1)の証明

     帰納法による証明の例で出てきた式ですが Sum(n)=1/2n(n+1)がSum(n+1)=Sum(n)+(n+1)となり Sum(n+1)=1/2n(n+1)+(n+1)を整理すると Sum(n+1)=1/2(n+1)[(n+1)+1]を得る。 とありましたが、整理する途中式が分かりません。 どうか教えて下さい。

  • w=z^n について

    w=z^n z=x+iy この式wがコーシー・リーマンの定理を満たしているかを二項定理と数学的帰納法を用いて証明する方法を教えてください。

  • 二項係数の問題

    高校3年、受験生です。 かれこれ三時間考えても分からない問題があるので質問させてください。 問 nを自然数、kを1≦k≦nを満たす自然数とするとき (n/k)^k≦C(n,k)≦n^k/2^(k-1) が成り立つことを示せ。 ただし、C(n,k)は二項係数である。 はじめにnに関する数学的帰納法で試しましたが出来ませんでした。 次にkに関する数学的帰納法をためしましたが出来ませんでした。 大小比較に関して、引き算を使って0以上する方法、 割り算を使って1との大小を比較し元の数の大小を比較する方法、 どちらもそれぞれnまたはkに関する数学的帰納法を用いましたがダメでした。 こうなると今の私には他に手だてが思いつきません。 もしかすると、帰納法を使わずして証明できるのでしょうか。 ヒント等回答していただければ幸いです。