• ベストアンサー

不活性電子対効果とは

不活性電子対効果とはどんなふうに理解したらよいのでしょうか? 今のところ、1対のs電子が失われたり、共有結合の生成に寄与することを妨げるように、とくに4,5,14,15族においてみられる効果としか理解できていません。(n-1)p,(n-1)d,(n-2)f電子などに比べns電子が内殻に貫入することで、ns電子に対する内殻電子による遮蔽効果が小さいため、ns電子が比較的安定している結果生じる効果ということでしょうか? そもそも貫入とは何でしょうか?動径分布を比較すると内殻電子の存在確率が最大の位置よりも内側にns電子は若干大きな存在確率をもつために、s電子は核電荷を感じやすく安定になるということでしょうか?でも、ns電子のエネルギー準位は内殻電子のそれより高いんですよね… 核電荷を感じやすいなら内殻電子と同等のエネルギー準位かそれ以下にならないとおかしい気がしますが、どうでしょうか? 結局、s電子が酸化や結合などで奪われにくいのは結局どう理解したらよいのでしょうか?

  • 化学
  • 回答数4
  • ありがとう数5

質問者が選んだベストアンサー

  • ベストアンサー
  • 101325
  • ベストアンサー率80% (495/617)
回答No.3

ANo.2に誤解を招く表現があったので、まずそれをお詫びして訂正します。  × 6s電子は5s電子よりも不活性になります。  ○ 第5周期の元素よりも第6周期の元素の方が、不活性電子対効果は大きくなります。 すみませんでした。 (1) 相対論効果を生じさせる電子がもともと存在する軌道とその加速過程などはどのようなものか? 以下に箇条書きで示します。 ・1s電子の速さは、原子番号Zに比例して大きくなる(v/c ~ Z/137)。 ・電子の速さが光速に近づくと電子は重くなるので、原子番号が大きくなると1s電子の質量が大きくなる。 ・原子軌道の半径は電子の質量に反比例して小さくなるので、1s電子の質量が大きくなると1s軌道が収縮する。 ・L殻、M殻などの外殻電子の速さはK殻の1s電子の速さに比べてきわめて遅いので、上で述べた相対論効果は(第1近似では)無視できる。 ・無視できるのだが、1s軌道が収縮すると2s, 3s, ... ,6s軌道も収縮しなければならない。なぜならこれらの軌道は1s軌道と直交しなければならないからである。 (2) 重原子でみられる相対論効果による安定化、不安定化する軌道が同時に存在するという解釈は正しいか? 正しいです。(1)で述べたようにs軌道は安定化します。詳しい計算によるとp軌道も程度は小さいですけど安定化します。一方d軌道とf軌道は不安定化します。s軌道とp軌道が収縮すれば、d電子とf電子への遮蔽効果が大きくなるからです。 (3) (2)が正しいという前提で、安定化と不安定化エネルギーはキャンセルされるか? 「原子内でエネルギーは一定」という意味でしたら、キャンセルはしません。 (4) (2)と(3)が正しいという前提で、実際重原子ではそれらの軌道のエネルギー準位の関係はどうなっているのか? 超重元素でどうなるのかは知らないのですけど、Au~Biでは、原子軌道のエネルギー準位が入れ替わるほどではない(はず)です。 参考文献 [1] J.Barret, 原子構造と周期性 pp. 81-84, 化学同人 (2004). http://www.kagakudojin.co.jp/library/ISBN978-4-7598-1006-6.htm [2] N. Kaltsoyannis, J. Chem. Soc., Dalton Trans., pp.1-11 (1996). [3] P. Pyykkö, Chem. Rev. 88, pp. 563-594 (1988).

platinized
質問者

補足

丁寧な回答ありがとうございました。式の展開やエネルギー準位図などはわからないので、直感的ではありますがかなり理解できたと思います。物性を直感的に理解することを目的としていたので、101325さんの回答は大変参考になりました。 「s電子の中で1s電子の速度が最も光速に近いために、相対論効果が最もみられるのは1s電子に対してであり、そのため1s軌道はかなり収縮することになる。1s電子の速度と比べると他のs電子のそれは大きくないため相対論効果はあまり現れないにも関わらず、各s軌道に対応する波動関数は互いに直交するという条件を満たすために1s軌道の収縮に続いて他のs軌道も収縮する。その収縮に伴いs軌道のエネルギーはより安定化する(条件1)。 また、内殻側への波動関数の分布の程度から、s軌道やp軌道の遮蔽効果の方がd軌道やf軌道のそれと比べると大きい。そのため、第4周期以降の重原子、特に遷移金属において、原子番号の増加と伴にと電子数が1ずつ増加しているにも関わらず、内殻のd軌道やf軌道の遮蔽効果があまり増加しないために、最外殻の電子に対する有効核電荷は若干の増加傾向にある(条件2)。 よって、第6周期の遷移金属中でAuの電気陰性度が比較的大きいのは、相対論効果に伴うs軌道の収縮と内殻のd軌道やf軌道の遮蔽効果があまり増加しないために比較的有効核電荷が大きいために、最外殻の6s軌道が安定化していることに起因している。 また、これらの理由から、水銀が常温で液体であること、Tlが+3価になりにくいこと(第二、三イオン化エネルギーが比較的大きい)、鉛が軟らかく比較的低融点であることなど説明できる。これらは、s電子に対する相対論効果による収縮と内殻電子の遮蔽効果が比較的小さいために有効核電荷が同族、同周期で比較的大きく、つまり5s電子や6s電子に対する束縛エネルギーが比較的大きいことから説明される。」 と自分の言葉でまとめてみましたが、どうでしょうか?訂正などありましたらよろしくお願いします。 ただ、条件1と条件2は互いに独立しているように考えているんですが、もしかすると条件2のもととなる波動関数の分布の違いは条件1のもととなる相対論効果に内包されているでしょうか?相対論効果が根本にあるのではとも思っています… その場合、相対論効果で条件2を直感的に理解できるような説明がありそうでしたら、ぜひお願いいたします。 話題は変わりますが、「なぜならこれらの軌道は1s軌道と直交しなければならないからである」とはどういうことでしょうか?波動関数はエルミート演算子に対する固有関数だから、直交化の操作をそうるとゼロにならなければならないことは知っています。直交する条件を満たすために、軌道が収縮するというのがどうも想像できません。異なる波動関数の積を距離rで0~∞まで積分するときに、例えば、どちらか一方の波動関数にのみrが収縮したという因子を含めた場合、その積分値がゼロではなくなるということでしょうか?その場合、どの項にそのような因子が含まれるのでしょうか?勝手な想像ですが、単純に一方の波動関数中のrをrα(r)(収縮率α:距離rに依存)のように置いたらいいのでしょうか?こちらもよろしくお願いします。 長々と申し訳ありませんm(_ _)m

その他の回答 (3)

  • 101325
  • ベストアンサー率80% (495/617)
回答No.4

> と自分の言葉でまとめてみましたが、どうでしょうか? よろしいのではないでしょうか。って上からものを言ってますね、私。すみません。 > 条件2のもととなる波動関数の分布の違いは条件1のもととなる相対論効果に内包されているでしょうか? その通りです。内包されています。 ANo.3の参考文献[2]によると、条件1のことを direct relativistic orbital contraction、条件2のことを indirect relativistic orbital expansionと呼ぶらしいです。理屈は以下のとおりです。 ・例えば3d軌道にある電子は、3s軌道と3p軌道にある電子(およびK殻とL殻にある電子)から遮蔽を受けている。 ・ここで何らかの理由により、3s軌道と3p軌道の軌道半径が少し小さくなれば、3d軌道にある電子の受ける遮蔽は少し大きくなる。 ・というのは、軌道半径が小さければ小さいほど、原子核の電荷をよりよく遮蔽するからである。 ・3d軌道にある電子の受ける遮蔽が少し大きくなれば、3d電子の感じる有効核電荷が少し小さくなるので、3d軌道の軌道半径は少し大きくなる。 ・4d軌道や4f軌道なども同じしくみで、軌道半径が大きくなる。 > どちらか一方の波動関数にのみrが収縮したという因子を含めた場合、その積分値がゼロではなくなるということでしょうか? そうです。積分値がゼロでなくなるということは、直交条件が満たされない、ということです。つまり1s, 2s, ..., 6s 軌道に電子があるとき、1s 軌道だけが縮まるのは、直交条件から許されません。縮まるときはみんな一緒に縮まります。 例えばs軌道関数 f(r), g(r) について ∫ f(r) g(r) r^2 dr = 0 という直交条件があったとします。ここで f(r) が縮まって f(αr) になったとします。このとき g(r) が何の変換も受けなければ ∫ f(αr) g(r) r^2 dr ≠ 0 になりますので直交条件が破れます。そこで直交条件を満たすためには g(r) にどのような変換をすればいいのか?が問題になるのですけど、αが距離 r に依存しない定数であると仮定すれば、この問題は簡単に解けます。答えは g(r) → g(αr) です。 ∫ f(αr) g(αr) r^2 dr = 0 変換 g(r) → g(αr) は、軌道関数 g(r) が f(r) と同じだけ収縮することを意味しています。 もちろん本当は、αは距離rに依存しますので、計算はずっとずっと大変で、収縮率も g(r) と f(r) で変わってきます。変わってくるのですけど、まあ大まかな話ということで。

platinized
質問者

お礼

本当にありがとうございます。全体像が見えてきました。 「相対論効果によって内殻のs軌道の収縮に伴って、波動関数の直交条件を満たすように外側の全s軌道も収縮する。同様にp軌道も若干収縮する。但し、これらの収縮率は一定ではない。これが、軌道に対する直接的な相対論効果による収縮を表している。 また、その収縮による遮蔽効果の増加によって、d軌道やf軌道はより外側に拡大する。これが、間接的な相対論効果による軌道の拡大を表している。」 というわけですね。理解が深まり、本当に助かりました。ご紹介くださった参考文献などで勉強したいと思います。このように意見を交わせたことは、これから勉強をしていく上でとてもプラスにはたらくと思います。もう敵の正体がだいたい分かってきましたから。 本当にありがとうございました。機会があいましたら、また愚問にお付き合いください。

  • 101325
  • ベストアンサー率80% (495/617)
回答No.2

> s電子が酸化や結合などで奪われにくいのは結局どう理解したらよいのでしょうか? 相対論効果によりs軌道が収縮して、s電子のイオン化や昇位がしにくくなるから。という説明はどうですか。 p軌道も同じように安定化されるのですけど、その度合いはs軌道のそれよりも小さいので、s軌道とp軌道のエネルギー差が相対論効果により開きます。相対論効果は原子が重くなるほど大きくなるので、6s電子は5s電子よりも不活性になります。 なぜ相対論効果によりs軌道が収縮するのか、の説明もあったほうがいいでしょうか?

platinized
質問者

補足

回答ありがとうございます。 「安定化」とは、その軌道を占有する電子のポテンシャルエネルギーがさらに負(核電荷から無限遠の基準0ev)になり、言い換えるとイオン化エネルギーがより大きくなる、という理解でよいでしょうか? こうなると、各軌道のエネルギー準位の関係がどうも分かりません。 相対論効果による軌道の収縮によってsやp電子(主にs電子)による遮蔽効果の増加のため、最外殻付近のd軌道やf軌道に対する有効核電荷は減少し、そのd軌道やf軌道は拡張する。つまり、最外殻付近のd軌道やf軌道を占有する電子のポテンシャルエネルギーがさらに正になる、と思うのですが? でも、この解釈は実際の系には当てはまっているのでしょうか? ちなみに、核電荷が最小の水素原子(Z=1)における軌道のエネルギーを比較すると、6s軌道が5d軌道より不安定でした。 では、タリウムTl(Z=81)の6s軌道と5d軌道のエネルギー準位はどうなっているんでしょうか?水素原子の6s軌道と5d軌道を基準として、Tlでは2電子に占有されている6s軌道がまあまあ安定化し、10電子に占有されている5d軌道がほんのわずか不安定化(あるいは、ほとんど変化なし)するんでしょうか?原子内でエネルギーは一定と考えたので、安定化と不安定化は相殺されるとして、「まあまあ」と「ほんのわずか」とあえて表現しましたが、この考え方は適切でしょうか? そもそも、相対論効果が生じるときの過程はどのようものでしょうか?例えば、外殻のs電子は原子核付近にも若干の存在確率をもっていことから、あるときそのs電子が原子核付近にいたとすると、安定化によるポテンシャルエネルギーの余剰分だけ運動エネルギーに変換(遷移ではないので)され、そのs電子の速度が光速の数十パーセントまで加速される、というような感じでしょうか? 質問事項が多くて申し訳ありません。これまでの質問をまためますと、 (1) 相対論効果を生じさせる電子がもともと存在する軌道とその加速過程などはどのようなものか? (2) 重原子でみられる相対論効果による安定化、不安定化する軌道が同時に存在するという解釈は正しいか? (3) (2)が正しいという前提で、安定化と不安定化エネルギーはキャンセルされるか? (4) (2)と(3)が正しいという前提で、実際重原子ではそれらの軌道のエネルギー準位の関係はどうなっているのか? 結局は(4)が明確に説明できれば、重原子の物性の理解に繋がる気がします。    現在、QNo.3257617の「最大核電荷数」というタイトルで相対論効果と物性の関連に関して議論の途中です。 http://oshiete1.goo.ne.jp/qa3257617.html?ans_count_asc=20 テーマは共通なので、いろんな方と考えを共有し、それが深い議論になつながると良いと思うので、よろしかければそちらで回答してくださるとうれしいです。お願いいたしますm(_ _)m

noname#89789
noname#89789
回答No.1

このご質問を見て、「タリウムの毒性」を思い出しました。 15族ビスマスもBi^5+よりBi^3+が安定、13族タリウムもTl^3+よりTl^+のほうが安定状態です。 このTl^+が粒の大きさも電荷もK^+とそっくりと言うことがタリウムの毒性になっている、 と聞いた覚えが有ります。 ホウ素族から酸素族の元素は、周期が下になるほどS軌道の電子が結合しにくくなります。 炭素族では、スズまではS軌道の電子が比較的容易に励起しうるためスズは4価で安定して存在しますが、 鉛は不活性電子対効果によりS軌道の電子が励起しにくくなっているため二価が最も安定状態になります。 と、私もここまでの理解しか得られていません。 こちらのページはいかがですか? http://www.kagakudojin.co.jp/special/ryoshi/index08.html 一例として、心筋梗塞の部位を発見するメカニズムなど、かなり詳しく書かれています。 よろしければどうぞ。

platinized
質問者

補足

回答ありがとうございます。 それらの元素に関する諸物性は以前に私も聞いたことがあります。 linimoさんと101325さんの返事を拝見したとところ、不活性電子対効果の真の理解は相対論効果の理解にあるように思えてきました。核電荷の増加に伴い相対論効果が特にs軌道で顕著に現れるようです。それによるs電子の安定化が、5sや6s電子などを不活性電子対にしているように思えます。どうでしょうか? 現在、QNo.3257617の「最大核電荷数」というタイトルで相対論効果と物性の関連に関して議論の途中です。 ​http://oshiete1.goo.ne.jp/qa3257617.html?ans_count_asc=20​ テーマは共通なので、いろんな方と考えを共有し、それが深い議論になつながると良いと思うので、よろしかければそちらで回答してくださるとうれしいです。よろしくお願いいたしますm(_ _)m

関連するQ&A

  • 不活性電子対効果について

    第四周期以降の第13族元素~第17族元素では族によって決まる最高酸化数よりも2少ない酸化数の化合物が安定になる傾向がしばしば見られる。(略) この原因として原子価殻のs軌道への核電荷の遮蔽が弱いため、電子雲が原子核近傍に引き寄せられエネルギー的に安定となり価電子としてふるまわないという仮説が唱えられた。 そのため、この現象を不活性電子対効果という。wikipedia抜粋 とありますが、これはs軌道の電子が抜けやすく、2価のイオンになりやすいという意味でしょうか?価電子として振舞わないの意味がわかりません。

  • 光電効果と内殻電子

    光電効果において、より結合エネルギーが大きい内殻の電子が飛ばされるのはなぜでしょうか。感覚的には逆のように思います。結合エネルギーが大きいと、飛び出す電子の運動エネルギーが小さくなり、原子核の受ける反跳エネルギーが小さくなるため、という説明を読んだのですが、いまいちよくわかりません。 別質問にアドバイスしたとき以前抱いたこの疑問を思い出しました。物理学は大の苦手です。よろしくお願いします。

  • 原子軌道

    第4周期の中性原子の原子軌道に電子が入る順番を見ると、エネルギー準位が3p<4s<3dの順に大きくなり、電子はエネルギー準位の小さい順に軌道に挿入されていきます。 ところが、電子を放出してイオンになるとき、4s軌道から抜けていくので、まるで3p<3d<4sに軌道エネルギー準位が変化したように見えます。 これは、なぜでしょうか。貫入や有効核電荷の点から説明がつきそうでつきません。分かりやすく教えていただけると幸いです。

  • 電子が落ち込まない証明

    古典論では原子核を回る負電荷の電子は電磁波(エネルギー)を放出して、しだいに運動エネルギーが弱まって、静電相互作用によって原子核に落ち込んでしまうと考えられています。量子論では、量子化エネルギーE=nh^2/(8mL^2)の式を利用することによって、電子が原子核に落ち込まないことを証明できるらしいです。でも、どうやったらいいのか分かりません。式変形が分かりません。教えてください。 n:エネルギー準位 h:プランク定数 m:電子の質量 L:電子の動ける範囲

  • 1s電子の取り除きやすさについて。

    ヘリウムの1s電子1つを取り除くのに必要なエネルギーが、水素原子の1s電子1つを取り除くのに必要とされるエネルギーに比べてずっと大きい理由についてなんですが… これは、水素原子の核電荷よりもヘリウムの核電荷の方が大きく、ヘリウムの1s電子の方が核に引き付けられていることや、ヘリウムが1s軌道に反対向きに2個のスピンを収容している構造:閉殻構造を持つことに因るのでしょうか!? ヘリウムの各電子がもう一方の電子に対して原子核の電荷を部分的に遮蔽するために、ヘリウムの有効核電荷は2よりも小さくなって(1.6875程になって)いるはずなのに、必要なエネルギーが水素原子の1s電子1つを取り除くのに必要とされるエネルギーよりも“ずっと”大きいのはなぜなんでしょうか…?? 教えて下さい。

  • 光電効果とコンプトン効果について

    光電効果やコンプトン効果は直接電子と相互作用しているのですか?それとも原子と相互作用しエネルギーを電子に与えているのですか? 以下のような説明が混在しており理解できません。 1.光子が物質中の電子(軌道電子)と衝突し、光子が持っていたエネルギーを電子が獲得して。。。(中略)電子が物質(原子の軌道)から飛び出す現象のこと。 2.光子が原子により吸収され消滅し、そのエネルギーを受けて軌道電子が放出される。 もし、2.なら光子は原子のどこに吸収されているのでしょうか?軌道電子?原子核? また、光電効果は内殻の電子のほうが放出されやすいとなっておりますが、なぜかわかりません。光子のエネルギーが束縛エネルギー以上であれば、K殻でもL殻でもさほど変わらないように思います。外殻にいくほど束縛エネルギーが低いのでコンプトン効果がおこりやすいから、でしょうか? コンプトンについても直接電子と相互作用しているのでしょうか?また、なぜ外殻の電子のほうがはじき飛ばされやすいのかがよくわかりません。 あと内殻の電子が空位になった結果特性X線が発生するのはなんとなくわかるのですが、オージェ電子を放出したときは内殻の空位のところはどうやって埋められるのでしょうか? 質問ばかりですがよろしくお願いいたします。

  • 電子軌道と電子殻 電子殻とボーアの量子条件

    電子は電子同士が衝突する事は無いのは、パウリの排他原理より量子軌道は1個の電子しか存在できないからと教わったのですが、L殻以降には1つの殻に電子が2個以上存在しています。これは同じエネルギー準位にいるという事ではないのですか?もし同じ殻の上でもs軌道やp軌道で軌道が異なるので排他律には反していないという事になるのでしょうか。それでも殻の上に8の字の軌道を描くとはどういう事でしょうか。原子核の周りに電子雲が存在する確率があるというのは理解できるのですが、『殻』という物がどういう概念なのか、それがどこで出来て、どのような性質があるのかが理解できません。 またボーアの量子条件2πr=nλを満たすようにして、原子核の周りを電子の軌道が定常波を描くように存在しますが、このnというのは殻ですか?それともsやp軌道に対応する物ですか。n=1.n=2...と原子核から離れた円周が続いていきますが、それが何を表しているのか分かりません。例えばn=1の軌道上の電子を基底状態といいますが、これはK殻に存在しているという事になるのでしょうか。 誤解している事も多そうですが、どなたか教えてもらえないでしょうか

  • X線光電子分光法(XPS)について

    こんにちは。 XPSについてお尋ねさせてください。 自分は、化学系の大学院を出ていまして、 就職してより現在まで5年ほどXPSで分析を行っています。 なので、XPSについては、それなりに理解はしているつもりです。 (量子論とかは素人なので、あくまで、「それなり」ですが・・・・^^;) ただ、先日いくつか尋ねられたことについて、明確に答えられなかったので ここで質問させてください。 ◆━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.たとえば、炭素(C)や酸素(O)はよく測定する元素種ですが これらは通常、内殻軌道である1s軌道を評価しますが、 なぜ、2s軌道や2p軌道じゃないのでしょうか? 他原子との結合エネルギーを評価しようとするとき、 こちら(O2s,O2p)でも良いんじゃないか? といった質問でした。 ⇒ この質問について、 確かに、XPSでは価電子帯の電子状態に関する情報も得られるが、 価電子帯の電子の束縛エネルギーは低いため、多原子系においては 内殻準位に比較して評価が難しい。 ・・・・などど曖昧な(しかも間違っている?)形で答えてしまいました。 これは違うような気もするのですが、 正しい理由をご存知の方がおりましたらお教えください。 ◆━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.「1.」の問いに関連していますが、 原子が大きくなると、XPSで評価する電子軌道も変わってきます。 たとえば、銀(Ag)= 3d、金(Au)= 4f などですね。 酸素や炭素などの小さな原子は1s軌道で評価するのに、 原子が大きくなるほど、2p→3d→4f・・・となっていくのは何故なのか? といった質問でした。 ⇒ これについては次のように答えています。 原子が大きくなるほど、より内殻側の電子ほど束縛エネルギーが大きくなってしまうので、 固定された照射X線のエネルギーではその電子を光電子として弾き飛ばすことが出来ない。 なので、原子が大きくなるほど、2p→3d→4f・・・となっていく。 と、自分では理解しているのですが、これは正しいでしょうか? ◆━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.たとえば、金(Au)などは、4f軌道の評価が一般的だと思うのですが 実際にはAuは4s~5dまでのスペクトルが観測されるようです。 このうちで、なぜ、4f軌道なのでしょうか? 「一番強度が得られる軌道だから」というのは簡単ですが ひとつの元素について軌道毎に強度が異なる理由があるのでしょうか? 内殻ほど電子密度が高くなって、その分強度が得られるじゃないかとも思うのですが、それは違うのでしょうか。 http://www.sugalab.mp.es.osaka-u.ac.jp/~sekiyama/PES1/kaisetu1_3.html こちらのサイトでは、そのAuのスペクトルが提示されていますが 4fを境に内殻へいくほど強度が減っています。 電子軌道によって、光電子強度が変わるという理由について教えてください。 もしかして、軌道によって光電子の発生確率が変わるのかな?とも思うのですが このあたりに関する記述が見つけられませんでした。 XPSに関する書籍でも、「内殻電子を評価する手法」とひとくくりに書かれてしまっているので、詳しいところが不明でした。 ◆━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 以上ですが、もしお詳しい方がいらっしゃいましたら ご教授いただきますようお願いいたします。 宜しくお願いいたします。

  • 電子殻とボーアの量子条件

    電子は電子同士が衝突する事は無いのは、パウリの排他原理より量子軌道は1個の電子しか存在できないからと教わったのですが、L殻以降には1つの殻に電子が2個以上存在しています。これは同じエネルギー準位にいるという事ではないのですか?もし同じ殻の上でもs軌道やp軌道で軌道が異なるので排他律には反していないという事になるのでしょうか。それでも殻の上に8の字の軌道を描くとはどういう事でしょうか。原子核の周りに電子雲が存在する確率があるというのは理解できるのですが、殻という物がどういう概念なのか、それがどこで出来るのかが理解できません。 またボーアの量子条件2πr=nλを満たすようにして、原子核の周りを電子の軌道が定常波を描くように存在しますが、このnというのは殻ですか?それともsやp軌道に対応する物ですか。n=1.n=2...と原子核から離れた円周が続いていきますが、それが何を表しているのか分かりません。例えばn=1の軌道上の電子を基底状態といいますが、これはK殻に存在しているという事になるのでしょうか。 誤解している事も多そうですが、どなたか教えてもらえないでしょうか。

  • ダイヤモンドの価電子帯はどの軌道から出来ているのでしょうか?

    固体中で多数の原子軌道が重なり合うことで、エネルギーバンドが形成することの説明の一つとして、隣接する原子どうしの軌道の重なり方によって最も結合的なものから反結合的なものまでエネルギー準位が分裂し、 たとえばS軌道でいえば + + + + + + + + … のようなものが最低エネルギーで、 + - + - + - + - … が最高エネルギーを取る、というものがあります。 それぞれの軌道のエネルギー準位は節の数が増えるにしたがって上から下まで連続的に並んでいると理解しています。 一方で、例えばC2分子は、2つのC原子が持つ軌道が混成して結合性軌道と反結合性軌道を作り、そのうち電子は結合性の軌道のみを埋めるとすると、これをダイヤモンドに拡張したとき、電子が2sp3混成軌道からできるバンドのうち、結合性の軌道のみを埋めていて、反結合性軌道は空軌道となっていると思うのですが、その間にバンドギャップが存在する、というのが上の説明とはどうもうもうまくかみ合わない気がするのですが・・・ ダイヤモンドの価電子帯はどの軌道によって出来ているのでしょうか?