• ベストアンサー

整数問題です

nが自然数のとき、5^6n + 5^4n + 5^2n + 1を13で割った余りを求めよ という問題で、 解)(mod13)とする   5^2=25≡-1より   (与式)≡(5^2)^3n + (5^2)^2n + (5^2)^n + 1      ≡(-1)^3n + (-1)^2n + (-1)^n +1      ≡2(-1)^n +2      ≡4 (n:偶数),       0 (n:奇数) というものなのですが、 4行目まではわかるのですが、 5行目の 『 ≡2(-1)^n +2』 になる理由がわかりません>< わかる方、ぜひおしえてください。

質問者が選んだベストアンサー

  • ベストアンサー
  • fukuda-h
  • ベストアンサー率47% (91/193)
回答No.1

≡(-1)^3n + (-1)^2n + (-1)^n +1      ≡2(-1)^n +2 がなり立つ理由ですね 指数法則で計算した結果です (-1)^3n =((-1)^3)^n=(-1)^n (-1)^2n=((-1)^2)^n=1^n=1 ですから ≡(-1)^3n + (-1)^2n + (-1)^n +1 =(-1)^n+1+ (-1)^n +1 となります

mumu--
質問者

お礼

回答ありがとうございました! とても わかりやすかったです★ 理解できてよかったですー! ありがとうございました♪

その他の回答 (1)

回答No.2

人それぞれとは思うが、mod13を使うにしても、与式=(5^n+1)(5^2n+1)と変形したほうが、分かりやすいように思う。

mumu--
質問者

お礼

回答ありがとうございました!

関連するQ&A

  • 整数問題?がわからないので教えてください

    nが自然数であるとき、n(n^3-1)(n^3+1)は偶数で、かつ7の倍数であることを示せ。 という問題なのですが、 nを奇数とするとn=2k+1(kは自然数)とおけ、与式=4k(2k+1)(4k^2+6k+3)(4k^3+6k^2+3k+1) までやってみましたが、よくわからないので、解答をお願いします。

  • 整数の問題?

    nを3以上の整数とする。x~(n-1)+x~(n-2)+・・・+x+1をx-1で割った余りは□アとなるから、x~(n)-1を  (x-1)~2で割った余りは□イである。 また、x~(n)-1をx~(2)-1で割った余りは、nが偶数のとき□ウであり、nが奇数のとき□エである。 □の中ア、イ、ウ、エに答を入れる問題ですが、自分の答はア:n イ:n(x-1) ウ:? エ:?となりました。 途中式も含めて解説をお願いできれば有り難いです。どうかよろしくお願いします。 、

  • 整数問題の証明

    「ある整数n(n+2)が8の倍数ならばnは偶数であることを証明せよ。」 という問題で、この問題の解答を一応書いておくと、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n=2k-1(kは整数)とおいて、 n(n+2)=(2k-1)(2k+1)=4k^2-1より、 n(n+2)は奇数なので8の倍数になりえず矛盾。 ゆえにnは偶数である」 ですが、私は、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n(n+2)=8k(kは整数)と表せるので、 n^2=2(4k-n)となり、n^2は偶数だから、 nが奇数ならばn^2も奇数なので矛盾。 ゆえにnは偶数である」 と解いたのですが、これは解答として成立しますか? 違うのであれば具体的にどこが違うのかもお願いします。

  • ピタゴラス数にからんだ整数問題

    以下の問題を一応証明したのですが、論述に自信がありません。入試の採点でつっこまれそうなか所を指摘して欲しいです。(京大志望です) 自然数 a,b,c について,等式 a^2+b^2=c^2 が成り立ち,かつ a,b は互いに素とする。このとき,次のことを証明せよ。 (1) a が奇数ならば,b は偶数であり,したがって c は奇数である。 (2) a が奇数のとき,a+c=2d^2 となる自然数 d が存在する。 (1)  a,bをともに奇数とすると  i,jを任意の自然数として   a=2i-1   b=2j-1 とおける。  すると、   a^2+b^2=(2i-1)^2+(2j-1)^2       =4(i^2+j^2)+4(i-j)+2=c^2  よってcが奇数であるときc^2も奇数となるからcは偶数。  よって   c=2k とおく。  すると、   0=a^2+b^2-c^2    =4(i^2+j^2-k^2)+4(i-j)+2≡2(mod.4) となって不合理。  よってa,bがともに奇数とはなり得ない。  よってaが奇数ならばbは偶数以外ありえない。 (2)  m,n(m<n)を自然数として   a=n^2-m^2   c=n^2+m^2 とおく。  (a,cはともに奇数よりn,mのうち一方は偶数で一方は奇数)  以下題意をみたす任意のa,cがこのようにあらわせることを示す。  上の式をn^2,m^2について解くと   n^2=(c+a)/2   m^2=(c-a)/2 となる。  よって   n^2m^2=(c^2-a^2)/4=b^2/4  よって   b=2mn となる。  これはbが偶数であるという(1)に矛盾しない。  よって上のようにa,b,cを表現することに不合理はない。(ただしm,nは互いに素とする。でないとa,b,cが互いに素であるという仮定に反する)  またこれより題意をみたすとき   a+c=2n^2  よって題意は示された。 (2)のa,cがm,nであのように表現できるという証明で、とりあえず矛盾はなさそうだからOKと言うような論法になってしまっている気がするのですが… どうでしょうか?

  • 整数問題

    質問) xの2次方程式: x²-(4k-1)x+36ⁿ=0 の解が全て正の整数となるような整数kの個数をnを用いて表せ。 ↑この設問の前に3ⁿを4で割った時の余りを求めよ。という設問がありました。(nが偶数の時は余り1,nが奇数の時は余り3) これをたぶん使うんでしょうがいい解法があれば教えてください。

  • 整数問題

    1/x+1/y=1/n ( 1=<x=<y   x,yは正の整数)   この方程式の解が2011個になるとき、n (n>0 整数)を求めよ。 nが具体的な数の場合はよくあると思い,考えてみたのですが、難しいと思いました。 2011個をどう考えたらいいのか分からず、挫折です。 与式は (x-n)(y-n)=n^2, 2011は奇数、1=<x=<2n=<y ここまでは、わかることの 羅列です。右辺のn^2の様子がわからないことには、どうしようもない。ここからどう 処理していいのか、アドバイスお願いします。

  • 整数問題の質問です。

    y-2z/x=z-3x/2y=y-6X/5zのとき、この式の値を求めよ。 という問題で、私は=kとおいて、分母を消したりしたのですが、全然式がきれいにならず、どう解くべきなのか分かりません!困っています。 あと、 nは自然数とする。x^nをx^2-x-2で割った時の余りを求めよ。 という問題は、二項定理を使うのかとは思いますが、それで解いたら答が全然違いました。答は 2^n-(-1)^nx/3+2^n+2(-1)^n/3でした。 解き方を教えてください!お願いします。

  • 整数問題

    出典:東京出版、新数学演習 問題1・13より 解答を読み進め、以下で進まなくなりました。 ------------------------------------------------------------------- "4桁の整数で。その下2桁の数と上2桁の数との和の平方と等しくなるものを求めよ。" 解答)  上2桁をa、下2桁をbと置く 100a+b=(a+b)^2 a^2+2(b-50)a+b^2-b=0 a=50-b±√(50^2-99b) …(1) このaが整数であるための条件は√の中が平方数であることで、そこで、 50^2-99b=n^2 (nは0以上の整数) …(2) とおくと、まず0≦n≦50であり、(2)の両辺を9で割った余り (左辺の余りについては暗算で7)について考えると ------------------------------------------------------------------- ここまでは完全に理解できています。問題は以下。 ------------------------------------------------------------------- nは9で割ると余りは4or5 …(※) (以降略) ------------------------------------------------------------------- この1文でつまずいています。 本解答は以降、同様に11で(2)の両辺割った余りを考察し、 0≦n≦50でこれらを満たすn(n=5,49,50)を求め、(1)(2)から整数解を 出しています。(解:2025、3025、9801) この流れは理解できますが、上の一文だけは展開矛盾を感じています。 こういう形でなく、 "n^2を9で割った余りが7になる最小のnは4or5" という言い回しなら分かりますが、(※)は n^2ではなくnについて言っています。 しかも4と5を余りといっています。 ただ本誌も何年も刊行されてますし、誤植ものではないと思います。 合同式の知識が浅はかなので、その辺で私が読み取れていない部分が ありそうですが、有識な方の解説を頂ければ幸いです。

  • 「mod」って何者??

    数学の整数問題で使うことができるらしい[mod]とかいうテクニック的なものってなんなんですか? そしてどうやって使うのですか? 例えば↓のような問題もmodやらを使って解けるのですか?? 問題1 nを自然数とするとき、 (1)nが3の倍数でない奇数の時、n'2(nの2乗)を12で割った余りを求めよ。 (2)n'3(nの3乗)を6で割った余りは、nを6で割った余りに等しいことを示せ。 (東北学院大学) 問題2 (1)正の整数nでn'3+1(nの3乗+1)が3で割り切れるものをすべて求めよ。 (2)正の整数nでn'n+1(nのn乗+1)が3で割り切れるものをすべて求めよ。 (一橋大) 詳しく教えてください。お願いします。

  • 整数の性質について

    ↓の証明がどうしても分かりません。 (1)ある自然数の平方とその数の和は偶数であることを連続する2つの自然数の積は偶数になることを利用して証明しなさい。 (2)3つの連続する整数では中央の数の2乗より1小さい数は両端の数の積と等しいことを証明しなさい。 (1)はある自然数をnとするとnの二乗+n=偶数になればいいんですよね?? (2)は整数をnとすると連続する3つの整数は(n-1)、n、(n+1)。 nの二乗-1=(n-1)(n+1)でいいんですか?? (1)も(2)も続きが分かりません。 どなたか教えてください!!お願いします。