• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:場合分けの考え方)

場合分けの考え方と範囲の求めかた

mirage70の回答

  • ベストアンサー
  • mirage70
  • ベストアンサー率28% (32/111)
回答No.8

√(x-a)=xからx≧0なので1+√(1-4a))/2と考えるのですか? そうです

suika_11
質問者

お礼

長い間ありがとうございました

関連するQ&A

  • 実数解

    xの方程式√(x-a)=xの実数解の求めかたが分かりません。 aは実数とする。 √(x-a)は正または0なのでx≧0 √(x-a)=xの両辺を2乗してx-a=x^2 (x^2)-x+a=0 判別式で表すとD=1-4a (i) D<0のとき1-4a<0からa>1/4のとき実数解をもたない (ii) D=0のとき1-4a=0 a=1/4のときx=1/2で重解 (iii) D>0のとき1-4a>0 a<1/4のとき 実数解はx=1±√(1-4a)/2 α={1-√(1-4a)/2},β={1+√(1-4a)}/2とすると (α+β)/2=1/2>0 これからどのようにして範囲を求めればいいかわかりません。

  • 実数係数4次方程式の判別式

    http://www004.upp.so-net.ne.jp/s_honma/polynomial/discriminant.htm を参照して、判別式について考えています。 そこでの、普通の意味での判別式は、 D = a_0^2(n-1)Π( αi - αj )^2 で、 D=0⇔多項式 F(X) (または、方程式 F(X)=0 )は、重根をもつ です。 2次においては、 D>0ならば、2つの相異なる実数解をもつ D<0ならば、2つの相異なる虚数解をもつ D=0ならば、実数の2重解をもつ 3次においては、 D>0ならば、3つの相異なる実数解をもつ D<0ならば、1つの実数解と2つの虚数解をもつ D=0とする。p=q=0ならば、3重解(解は0のみ)をもつ        pq≠0 ならば、 3つの実数解(2重解とその他の解)をもつ のように、2次や3次に限っては、判別式Dの正負または0の値によって明確に分類されます。 では、4次方程式の場合にはどうなるでしょうか? たとえば、相異なる実数解を4個もつ条件は何でしょうか? (極大値が正、極小値が負という条件を考えましたが、微分した3次方程式を解くことになるし、結果もきれいにならないだろうし、また、より一般には、5次方程式は解けないし、なにか別のいい方法を知りたいと思っています。)

  • 【数学II】解の判別

    {問題} aを定数とするとき、次の方程式の解の種類を判別せよ。 2x²-2ax-a²+3=0 私はこう解きました。 D=4a²-4・2・(-a²+3)  =4a+8a²-24  =12a²-24  =12(a²-2)  =12(a²-√2)(a²+√2) (i)D>0  a-√2>0  a<√2         a+√2>0  a>-√2          -√2<a<√2 のとき、異なる2つの実数解をもつ。 (ii)D=0  a=±2 のとき、重解。 (iii)D<0  a-√2<0  a>√2         a+√2<0  a<-√2           a>√2,a<-√2 のとき、異なる2つの虚数解をもつ。 しかし、解答を確認してみると、 a<-√2,√2<a のとき異なる2つの実数解 a=±√2 のとき重解 -√2<a<√2 のとき異なる2つの虚数解 となっています。 (i)と(iii)の不等号の向きが逆になっています。 なぜなのでしょうか。 a-√2>0 a<√2 の部分の計算が違っているのでしょうか。 それとも、判別式から間違っているのでしょうか。 教えていただけませんか? 宜しくお願い致します。

  • 実数係数の二次方程式の解の条件?

    実数係数の二次方程式  ax^2+bx+c=0 (a≠0) において、二つの解をα、βとし、判別式をDとするとき、 (I)「二つの解が共に正」⇔「D≧0, 2解の和>0, 2解の積>0」 (II)「二つの解が共に負」⇔「D≧0, 2解の和<0, 2解の積>0」 (III)「一つの解が正、他の解が負」⇔「2解の積<0」 とあるのですが、 どうして(I)(II)の場合にはD≧0が必要で、(III)の場合にはD≧0は必要ないんですか?

  • 2次方程式が実数解を持つ範囲

    こんばんは、宜しくお願いします。 2次方程式 x^2-(8-a)x+12-ab=0が定数aの値に関わらず実数解を持つときの定数bの範囲を求めよ。 まず、実数解とあるので重解でもよいから判別式D≧0ですよね。 それで、D=a^2+4(b-4)a+16ですね。 ここで、ここからの進め方が分らなかったので答えを見ると、 ”aの2次方程式=a^2+4(b-4)a+16の判別式を新たにDaとおくとD≧0となる条件はDa/4≦0でなければいけない。”とあるのですが、わからないです。 なぜDa/4≧0ではなくDa/4≦0なのでしょうか? よろしくおねがいします。

  • 二次方程式の解の判別

    御世話になっております。 二次方程式 x^2+ax-a-2=0の解の判別です。但し、aは実数とします。 判別式=Dとして、D=b^2-4acですから、この式のD=a^2-4(-a-2)=a^2+4a+8になると思います。aは実数ですから、Dも実数(なハズ) と筋道たてましたが、解の判別の定義から、解を判別するのが出来ません。解の判別について、Dが実数か複素数かは関係無いですよね?(数II時点) しかし、回答をみたところ、この方程式の解は「実数解」でした。 aの場合の数について考えて、不等式の要領で解く方法は分かるのですが、回答のように特定できる考え方が解りません。お解りになる方のアドバイスをお待ちしております。

  • 2次方程式の場合わけ

    2次方程式の場合わけ x^2 -2px+2-p=0の二つの解がともに正、ともに負、二つの解の符号が異なる、の場合の実数pの解の値の範囲をそれぞれ求めよ という問題で正、負ともに場合わけで二つの解と書いてあったのでD>0とだと思ったのですがD≧0と書いてありました D=0は重解で解は一つしかでないと思うのですがなにか思い違いをしているのでしょうか? ご教授お願い致します

  • 数学の定理や概念でただし書きの場合分けをなくしたい

    たがいに平行でない平面2直線は交点を一つ持つが、たがいに平行な二つの平面直線 ax + by + c = 0 と ax + by + d = 0 は c = d で完全に一致しなければ実平面上で交点を持たない。 ところが実射影平面において、平行な直線(ただし一致しない)の式を斉次化して、斉次座標で [b, a, 0] = [b/a, 1, 0] という交点を見つけることができます。 では、たがいに一致する二つの平面直線も唯一の交点を持つような理論(ただし、ある程度の意味を持つ)を考えることはできますか? 最高次の係数が0でない実数係数二次方程式は、判別式が正のとき2つの解、判別式が0のとき1つの解、判別式が負のとき0つの解をもつ。 ところが、判別式が0のときは重解の概念、判別式が負のときには複素数の概念を考えることで、判別式の符号にかかわらず、2つの解を持つと考えることができます。 では、最高次の係数が0の二次方程式も2つの解をもつというような理論(ただし、ある程度の意味を持つ)を考えることはできますか?

  • 回答をお願いします

    Aを定数とする。次の二次方程式の解の種類を判別せよ。 X2乗+2(A-1)x+A2乗-3A+4=0 ――― 二次方程式x2乗+(A-3)x+1=0が重解をもつように定数Aの値を定めよ。またそのときの重解を求めよ。 度々すみません(汗)

  • 数学IIの問題あっていますか?

    問 mを定数とする。次の2次方程式の解の種類を判別せよ。 (1) x2+4x+m=0 D>0すなわちm<4[異なる2つの実数解] D=0mすなわち=4[重解] D<0すなわちm>4[異なる2つ虚数解] (2) x2-mx+4=0 D>0すなわちm<-4[異なる2つの実数解] D=0mすなわち=-4[重解] D<0すなわちm>-4[異なる2つ虚数解] であっていますか?