• 締切済み

高校レベルの整数問題です

正の整数mを10進法で表したときの各桁の数の2乗の和をf(m)とする。 (1)mの桁数が4以上なら、f(m)の桁数はmの桁数より小さいことを示せ。 (2)数列a(n)をa(1)=m,a(n+1)=f(a(n))と定める。数列a(n)はある項以降は同じ数の並びの繰り返しとなることを示せ。 この問題ですがどこから手をつければいいのかさっぱりわかりません。 どなたか教えていただけないでしょうか

みんなの回答

  • killer_7
  • ベストアンサー率57% (58/101)
回答No.2

> これは帰納法によってn≧4もしめされるということですか? (1)の証明を書く手段として数学的帰納法を紹介しましたが,(2)には関係ありません. (1)の結果から, 「1000以上のmからはじめても,いずれa_nの項は3桁になる」から, はじめから1000未満のmについてのみ考えればよいということ. > この部分がよくわからないです。 どこがわかって,どこが分からないのかを書いていただかないと回答のしようがありませんね.とりあえず構造は以下の通り. (1)m < 1000ならば f(m) ≦324より,「m < 1000ならば,f(m) < 1000」である. (2)したがって,m < 1000ならば,つねに a_n < 1000 である. (3)このとき,a_nが1000項つづけて違う数字になることはない, 言い換えれば,1000項目までに,同じ数字が2度あらわれる.

  • killer_7
  • ベストアンサー率57% (58/101)
回答No.1

(1)はかなり明らかでしょう. mがn桁のとき,f(m)が最大になるのは9がn個ならぶとき. mが4桁のとき,f(m) ≦ f(9999) = 4*9^2 = 324 < 1000 だから,まず4桁ではO.K. 5桁以上でも成り立つことは,直感的には明らかですが, 右辺(上の場合の1000)が10倍になるのに対して, 左辺(上の場合だと243)は10倍にはなれないなどとして示せるでしょう (つまり,「mがn桁のとき,f(m) ≦ n*9^2 < 10^(n-1)」がn≧4で成り立つことを数学的帰納法などで言えばよい). (2)は, (1)から,m < 1000の場合に題意が成り立つことを示せば十分 (なぜ十分かを考えてください). m < 1000のとき,f(m) ≦ 324 であり,{a_n}のどの項も1000を超えない. したがって,1000項目までに必ずa_i = a_jとなるi,j(j>i)があり, このとき,第j項目の以降は,第i項から第j項までの繰り返しになる.

issa0
質問者

補足

回答ありがとうございます。(1)は理解できました! (2)なんですが・・・ >>(1)から,m < 1000の場合に題意が成り立つことを示せば十分 (なぜ十分かを考えてください) これは帰納法によってn≧4もしめされるということですか? >>m < 1000のとき,f(m) ≦ 324 であり,{a_n}のどの項も1000を超えない. したがって,1000項目までに必ずa_i = a_jとなるi,j(j>i)があり, このとき,第j項目の以降は,第i項から第j項までの繰り返しになる この部分がよくわからないです。折角回答いただいたのですがもうすこし解説お願いできないでしょうか?

関連するQ&A

  • 3連続の整数が、2と3の倍数になることの証明

    高校数学の数列の問題です。 数列{an}の初項a1 から、第n項での和を、Snと表す。 この数列が、(n+2)an=3Sn(n=1,2,3,・・・) をみたす。数列{an}の初項a1が整数であるとき、Snは整数であることを示せ。 (n+2)a[n]-(n+1)a[n-1]=3( S[n]- S[ n-1]) これから、一般項を求めて、 a{n}=(n+1)/(n-1) a {n-1} an={(n+1)/( n -1)}×{n/n-2}×{ n -1}×{ n -1/ n -3}× { n -2/ n-4}×… {5/3}×{4/2}×{3/1}a1 約分して、 これから一般項求める an={n(n+1)/2}× a{ 1} (ここからは、ある人からの回答です) a[n]={n(n+1)/2}× a[1] を求めた時点で、 n(n+1)/2 は1からnまでの和ですから a[1]が整数なので、 a[n]は整数であることが分かります。 a[1]からa[n]までの和である S[n]も当然整数となります。 もし計算で出すのでしたら n(n+1)(n+2)/6×a[1] となります。 これが整数であることは n(n+1)(n+2) は連続する3つの整数なので、 2の倍数と3の倍数を含むことから6の倍数となります。 つまり分母の6が約分されるので整数となります。 とあるのですが、 この「 n(n+1)(n+2) は連続する3つの整数なので、 2の倍数と3の倍数を含むことから6の倍数となります。」 この部分は、証明なしで使っていいのでしょうか? いわれると何となくわかるのですが・・・ また、これを示すには、どうすれば示せますか? お願いします。

  • 整数問題の質問です。

    3で割ると1余り、5で割ると3余る2桁の最大の数を求めよ。という問題で、解説は、 3で割ると1余り、5で割ると3余る数の1つをaとおくと、a=3m+1 a=5n+2(m,nは整数)と表せる。3m+1=5n+3より、3m=5n+2 n=0,1,-1のうち、5n+2が3の倍数になるのはn=-1で、このときm=-1よってa=-2 求める数は15k-2(kは整数)と表せるので k=6のとき88となる。 となっているのですが、わからないことが2つあります。1つ目は、どうして n=0,1,-1にしたのかということで、2つ目は、a=2だとどうして求める数が15k-2(kは整数)になるのかということです。教えて下さい。

  • 整数問題

    出典:東京出版、新数学演習 問題1・13より 解答を読み進め、以下で進まなくなりました。 ------------------------------------------------------------------- "4桁の整数で。その下2桁の数と上2桁の数との和の平方と等しくなるものを求めよ。" 解答)  上2桁をa、下2桁をbと置く 100a+b=(a+b)^2 a^2+2(b-50)a+b^2-b=0 a=50-b±√(50^2-99b) …(1) このaが整数であるための条件は√の中が平方数であることで、そこで、 50^2-99b=n^2 (nは0以上の整数) …(2) とおくと、まず0≦n≦50であり、(2)の両辺を9で割った余り (左辺の余りについては暗算で7)について考えると ------------------------------------------------------------------- ここまでは完全に理解できています。問題は以下。 ------------------------------------------------------------------- nは9で割ると余りは4or5 …(※) (以降略) ------------------------------------------------------------------- この1文でつまずいています。 本解答は以降、同様に11で(2)の両辺割った余りを考察し、 0≦n≦50でこれらを満たすn(n=5,49,50)を求め、(1)(2)から整数解を 出しています。(解:2025、3025、9801) この流れは理解できますが、上の一文だけは展開矛盾を感じています。 こういう形でなく、 "n^2を9で割った余りが7になる最小のnは4or5" という言い回しなら分かりますが、(※)は n^2ではなくnについて言っています。 しかも4と5を余りといっています。 ただ本誌も何年も刊行されてますし、誤植ものではないと思います。 合同式の知識が浅はかなので、その辺で私が読み取れていない部分が ありそうですが、有識な方の解説を頂ければ幸いです。

  • 数学Bの問題(数列)を教えて下さい。

    ・m=nではないとする。ある等差数列の第m項がm2乗、第n項がn2乗であるとき、第(m+n)項を求めよ。 ・数列(an)の初項から第n項までの和SnがSn=n-2anで表わされるとき、anをnの式で表せ。 息子の数学の問題です。 分かる方お教え下さい。 お願いします。

  • 整数の問題です。

    n:正の整数、a:実数ですべての整数mに対して m^2-(a-1)m+n^2/2n+1>1 が成り立つようなaの範囲をnを用いて表せ。 という問題です。 左辺=f(m)とおいてつねにf(a)>0かつf(a/2-1)>0となればよいのでしょうか?

  • 数学Bの数列の穴埋め問題です

    数列{a[n]}は、第2項が5、初項から第4項までの和が26である等差数列である。 この数列{a[n]}の一般項は a[n]=[ア]n-[イ]  であり、数列{a[n]}の初項から第n項までの和は [ウ]n^2/[エ]+[オ]n/[カ]である。([エ]分の[ウ]nの2乗[カ]分の[オ]n) 次に、数列{b[n]}について、初項から第n項までの和をS[n]とするとき、 S[n]=1n/2-5n^2/6(n=1,2,3,...)である。 (2分の1n引く6分の5nの2乗です) このとき, b[1]=-[キ]/[ク]であり、(マイナス[ク]分の[キ]) b[n]=[ケ]/[コ]-[サ]n/[シ]である。([コ]分の[ケ]引く[シ]分の[サ]n) c[n]=a[n]+b[n](n=1,2,3,...)とし、c[n]の整数部分をP[n]とする。 このとき、 P[2]=[ス],P[7]=[セ],P[100]=[ソ] この問題の[ア]~[ソ]まで埋めて下さい。計算式も書いて下さい。 ^は累乗 /は分数(1/2は2分の1)です。 解ける方よろしくお願いします。

  • 整数の性質について

    ↓の証明がどうしても分かりません。 (1)ある自然数の平方とその数の和は偶数であることを連続する2つの自然数の積は偶数になることを利用して証明しなさい。 (2)3つの連続する整数では中央の数の2乗より1小さい数は両端の数の積と等しいことを証明しなさい。 (1)はある自然数をnとするとnの二乗+n=偶数になればいいんですよね?? (2)は整数をnとすると連続する3つの整数は(n-1)、n、(n+1)。 nの二乗-1=(n-1)(n+1)でいいんですか?? (1)も(2)も続きが分かりません。 どなたか教えてください!!お願いします。

  • 数列の問題

    こんばんは。タイトルのとおり数列の問題です。 (1)初項1、公比2の等比数列がある。この数列の第5項までの和をa1、第6項から第10項までの和をa2、第11項から第15項までの和をa3とし、以下同様にして数列a1、a2、a3、・・・、an、・・・をつくる。 問1、一般項を求めよ。 問2、anが10の6乗をはじめてこえるときのnの値 (2)1から始まる奇数列を、次のように第n群が2n個の数を含むように区分する。 |1,3|5,7,9,11|13,15,17,19,21,23|25・・ 問1、第n群の最初の数を求めよ。 問2、第n群に属するすべての数の和を求めよ。 (3)次の漸化式を解き、一般項anを求めよ。    a1=1、an+1=2an+3 考えても全然わからないんで助けてください。よろしくおねがいします。

  • 数列と整数の融合問題?

    (1) 実数a,b,cはa<b<cを満たすとする。このときa,b,cを項として含む等差数列が存在するためには、適当な自然数k,tによってb=(ka+tc)/(k+t)と書き表せることが必要十分である。このことを示せ。 (2) nを自然数とする。このとき3つの実数logn,log(n+1),log(n+2)を項として含む等差数列は存在しないことを示せ。 解(2)(1はわかります) この3つの数を含む等差数列があれば、適当な自然数k,tによって log(n+1)={klogn+tlog(n+2)}/(k+t) と表される。 これより、 log(n+1)^(k+t)=logn^k+log(n+2)^t ∴(n+1)^(k+t)=n^k×(n+2)^t …(1) n=1のとき、2^(k+t)=3^tで成立しない。 「 n>1のとき、n+1とnは互いに素でないとすると、 n+1=m(1)p 、n=m(2)pとなる1より大きいpがあって、辺々ひくと、 {m(1)-m(2)}p=1 (p>1)より矛盾する。 よって、n+1とnは互いに素だから(1)は矛盾 よって、題意が成立する。                 」 「」の部分がどうもよくわかりません。一応整数関係の問題は一通りやったのですが…。 (1)でn+2に関しては何もしなくてもよいのでしょうか? それと、整数問題ではこの解法自体あまりみたことないので、こういう解法もあると覚えていたらよいのでしょうか? もしもう少し分かりやすい解法があればよろしくお願いします。

  • 数列についての問題です

    xを非負の数とし、rを0<r<1とするとき、 f(x) = x・r^x と定義する。このとき、nを正の数とし数列{a(n)}の一般項を a(n) = f(n-1) で表す。この時の初項から第n項までの和を求めよ。 という問題なのですが、数列が苦手ゆえ、 どのように解けばいいのか分からず困っています。 どうかこの問題についての考え方を教えて頂けないでしょうか 宜しくお願いします。