• 締切済み

∫(1/x^a)dxの積分がわかりません。。

∫(1/x^a)dx (a>1) の積分がわかりません。。 あと∫{1/(b-x)^a}dx (0<a<1) の積分もいろいろ考えたのですがわからないです。 どなたかわかるようでしたら解説お願いします。

みんなの回答

  • peror
  • ベストアンサー率21% (17/79)
回答No.1

∫(1/x^a)dx (a>1) 1/x^a=x^-a に変形すれば、極普通の関数です。 ∫{1/(b-x)^a}dx (0<a<1) b-x=t -dx=dt と置けば、上と同様です。 がんばってください。

salyuh
質問者

お礼

ありがとうございます!! 助かりました(^-^")/ 数学はホントに苦手で、でも今度テストがあって焦って勉強しています・・・。 ありがとうございました。

関連するQ&A

  • 積分問題∫√(x^2+a)dxです。

    ∫√(x^2+a)dxの積分が分かりません。∫1/√(x^2+a)dxは部分積分を用いて、t=x+√(x^2+a)とおいてlog|x+√(x^2+a)|+c で解けましたが、同じようにできるのでしょうか。よろしくお願いします。

  • ∫cosh^2(x)/(a^2+(b-x)^2)dxを-∞<x<∞の範囲で定積分をしたいのですが、やり方を...

    ∫cosh^2(x)/(a^2+(b-x)^2)dxを-∞<x<∞の範囲で定積分をしたいのですが、やり方を教えて頂けませんか? 最終的には、bを変数としてグラフを描くことが目標です。 mapleを(初心者ですが)使って不定積分すると、 -2/[(e^x)^2+1](a^2+b^2-2bx+x^2)+∫4(b-x)/(a^2+b~2^2bx+x^2)^2((e^x)^2+1)dx となり、積分結果に積分が出てきます。 また、直接定積分を行うと積分されずにそのままの∫の形で表示されます。 mapleの使い方が悪いのか、そもそも扱っている式が難しいのかわかりません。 数値計算を行う方が適していたら、その方法もお教え下さい。 申し訳ありませんが、どなたか教えて下さい。よろしくお願い致します。

  • ∫1/√(x^2+a)dxの求め方

    ∫1/√(x^2+a)dxの求め方 積分公式の一つに ∫1/√(x^2+a)dx=log{x+√(x^2+a)}+C(Cは積分定数) がありますよね。 これってどのように証明すればよいのですか? x=asinθで置換積分してもうまく解けないのですが…。

  • 積分:∫(x^2+1)^50*2x dx

    x^2=1=uとして、d/dx[F(x)]=d/du[F(u)]du/dx=f(u)du/dxの公式を使って求めるのですが、 教科書の解説ではこうなっています。 u=x^2+1とする。 du/dx=2xなので、 ∫(x^2+1)^50*2x dx=∫[u^50 du/dx] dx=∫u^50 du=u^51/51+C=(x^2 + 1)^51/51+C ∫(x^2+1)^50*2x dxから∫[u^50 du/dx] dx=∫u^50 duに移行する間に2xが消えてしまったように思います。 どこに行ってしまったのでしょうか? duを使った積分の基本問題だと思いますが、教科書の解説が分からずすいませんが、教えてもらえますか? よろしくお願いします。

  • x/(a^2+x^2)の積分について

    x/(a^2+x^2)の積分について t=a^2+x^2とおいて dt=2xdx よって ∫(x/(a^2+x^2))dx=(1/2)*∫(1/t)dt=(1/2)*log(t)+C と置換積分により積分することが出来ますが、 部分積分では計算できないのでしょうか? (a^2+x^2)'=2x ∫(x/(a^2+x^2))dx=(1/2)*∫[(1/(a^2+x^2))*(a^2+x^2)']dx として計算できると思ったのですが、うまく行きません。 どなたかアドバイス頂けたら幸いです。

  • ∫(1/(4-3x))dxの積分

    ∫(1/(4-3x))dxの積分ができません。 ∫(4-3x)^(-1)dxに表してみても積分できないです。 どなたか、解法を教えて下さい。

  • ∫(a,b)αf(x)dx=α∫(a,b)f(x)dxという定積分の性質の証明について

    aからbまでのf(x)の定積分を∫(a,b)f(x)dxと表します。 不足和・過剰和から始まって定積分を定義した後の、「f(x)が区間[a,b]でリーマン積分可能で、αが定数ならば、∫(a,b)αf(x)dx=α∫(a,b)f(x)dx」という定積分の性質の証明についてですが、大学初年級の理工学部向けの教科書・参考書ではこの定理の証明はたいてい「容易なので省略する」となっており、私が見た中で唯一証明してあるのは「微分積分学1」(三村征雄、岩波全書)です。 この本(235ページ)によると、α≧0、α≦0の二つの場合に分けています。α≧0の場合は容易ですが、α≦0のときにはsup(-f(x))=-inff(x)であることを示してからひとつの補題を証明し、その後に上の証明に取り掛かっています。これによると、この定理は、どうも「容易なので省略する」とはいえないような気がします。 そこでお尋ねですが、 1 αの場合分けをしないなどして、定積分の定義から容易に、それこそ2,3行ぐらいで証明する手法はありますか? (ただし、f(x)が連続関数であるときの定理∫(a,b)f(x)dx=F(b)-F(a)(F(x)はf(x)の原始関数)というルートは使わないものとします。) 2 もし、容易でないにもかかわらず証明を省略する場合は紙数の都合によるのでしょうか? 3 初学者には容易ではないのに、著者がそう判断してしまっているということはありえますか? 以上、よろしくお願いいたします。

  • (1/a) / (1 - x/a) の積分

    ∫(1/a) / (1 - x/a) dx の積分は、 -log(1 - x/a)になるようなのですが、私が計算すると、 ∫(1/a) / (1 - x/a) dx → (1/a) ∫ 1 / (1 - x/a) dx ここで、t = 1 - x/a dt/dx = -1 , dt = -1 dx → (1/a) ∫ -1 / t dt → (-1/a) log t t = 1 - x/a なので、 → (-1/a) log (1 - x/a) となってしまい、1/aが余計なのです。 どこからおかしいのでしょうか? よろしくお願いします。

  • ∫√(x*x+a) dx  の解法

    ∫√(x*x+a)dx の求め方を教えてください。 置換積分でしょうか? 教えてください。 よろしくお願いします。

  • 定積分∫[1/√3→1]√(1-x^2)dx が解けません。

    ∫[1/√3→1]√(1-x^2)dx を解く問題なのですが、公式に当てはめて、 ∫√(1-x^2)dx = 1/2*(x√(1-x^2)+arcsinx) これに積分範囲の[1/√3→1]を代入したのですが、arcsin(1/√3)が計算できませんでした。 答えは (π-2)/6 となるみたいなのですが、電卓等を使わずに計算できるのでしょうか。どなたか教えてください。