• ベストアンサー

二つのΓ関数Γ(p)、Γ(q)の積について

endlessriverの回答

回答No.1

rとθの積分を分離してr^2=xの変数変換をすればΓ(p+q)がでてきます。残りはベータ関数B(q,p).

torahuzuku
質問者

お礼

今日は。ご回答有難うございます。 質問した式で、ご指摘のようにrとθの積分に分けr^2=xの変数変換行えばΓ(p+q)が出てきてΒ関数(p,q)を導く事が出来る事は理解出来たのですが、rdθdrの導出の意味が分からず質問させて頂きました。 またの質問の折りも宜しくお願いします。 有難うございました。

関連するQ&A

  • 積分の変数変換について

     積分の変数変換に関する質問です。一番簡単な直交座標から極座標への変換を例にします。   x = x(r,θ) = rcosθ.   y = y(r,θ) = rsinθ. であるとき f(x,y) = 1 を x^2 + y^2 ≦ R^2 という円内を積分領域して積分すれば   ∫∫f(x,y)dxdy = ∫∫dxdy = ∫∫rdrdθ ・・・・・・ (#) となり円の面積が求められます。つまり直交座標から極座標に変換して積分するときは   dxdy →drdθ ではなく、   dxdy →rdrdθ としなければならないと、どんな参考書にも書いてあります。つまり r を余分に付け加えるわけですが、これは   ┌ ┐ ┌       ┐┌  ┐   |dx|=|cosθ -rsinθ||dr |   |dy| |sinθ  rcosθ||dθ|   └ ┘ └       ┘└  ┘   |J| =|cosθ -rsinθ|= rcos^2θ- (-rsin^2θ) = r      |sinθ  rcosθ| のように行列式|J|でも求めることができ、|J|をヤコビアンと呼ぶということも参考書に載っています。  一方で   rdrdθ= rdθ*dr は極座標における面積要素ですから(#)の変換は直感的にも納得できます。θは角度ですから drdθでは面積になれないわけです。(#)は具体的には   ∫[0~2π]∫[0~R]rdrdθ で計算できます。この式だけじーっと見ていると、いつのまにか r とθが極座標の変数であることが忘れ(笑)、あたかもθを縦軸、r を横軸とする '直交座標' において関数 θ= r を積分していると見なせます。  で、ここからが質問なのですが・・・  直交座標から任意の座標に変数変換して積分するということは、結局のところ、その任意の座標を直交座標と見なして計算することであると考えてよいのでしょうか?  たとえば   x = x(u,v,w)   y = y(u,v,w)   z = z(u,v,w)   ┌  ┐  ┌        ┐┌ ┐   |dx| |∂x/∂u ∂x/∂v ∂x/∂w ||du|   |dy|=|∂y/∂u ∂y/∂v ∂x/∂w||dv|   |dz| |∂z/∂u ∂z/∂v ∂z/∂w||dw|   └ ┘  └         ┘└ ┘     |∂x/∂u ∂x/∂v ∂x/∂w|   |J| =|∂y/∂u ∂y/∂v ∂x/∂w|     |∂z/∂u ∂z/∂v ∂z/∂w| であるとき   dxdydz = |J|dudvdw という変数変換は、 u、v、w がどんな座標の変数であれ、最終的には u、v、w の '直交座標' で計算することであると考えてよいのかということです。  任意の座標同士の変数変換というのはどうなるのでしょうね。ちょっと想像しかねます。

  • 2重積分 変数変換をする場合 どなたか教えていただけないでしょうか?

    1.∫∫(x^2+y^2)dxdy  D={(x,y)|(x-1)^2+y^2≦1} 2.∫∫e^(-(x^2+y^2))dxdy D={(x,y)|0≦x,0≦y} 上記の問題について、変数変換を使用するんだろうなとは解るのですが、そこから実際どうやって解いていくのかわかりません。 1については(x-1)=rcosθ,y=rsinθとして変数変換するのでしょうか? 2については、x=rcosθ,y=rsinθとして考えてみたのですが、Dの領域が座標変換した場合にどうなるのかさっぱり見当が付きません。 変数変換をするところから答えを導出するまで、詳しい過程を教えていただける方がいらっしゃいましたら、よろしくお願いいたします。

  • 極座標による重積分の範囲の取りかた

    ∬[D] sin√(x^2+y^2) dxdy  D:(x^2 + y^2 <= π^2) を極座標でに変換して求めよ。 という問題で、 x = rcosθ、y = rsinθ とおくのはわかるのですが、 rとθの範囲を、どのように置けばいいのかわかりません。 x^2+y^2 = (rcosθ)^2 + (rsinθ)^2 = r^2{(cosθ)^2 + (sinθ)^2} = r^2< = π^2 とした後、-π =< r =< π としたのですが、合っているのでしょうか? rとθの範囲の取りかたを教えてください。お願いします。

  • 極座標を用いた重積分

    極座標を用いて重積分をし、最終的に広義積分を求める問題なのですが、非常に煩雑でどうも手がつかないので、教えていただけると助かります。 ∬[D]exp(-px^2-qy^2)dxdy (p,q>0) D={(x,y);x≧0, y≧0} というものです。 x=rcosθ,y=rsinθ と極座標表示をし、積分区間を 0≦r≦R, 0≦θ≦π/2 として積分をし、R→∞とすれば求まるのはわかるのですが、pやqがあるせいで、変数変換をしてもexpの中にθとrが混在しているので、どうやっていいのか途方に暮れています…。 よろしくお願いいたします。

  • 重積分

    以下の問題がどう変換してもややこしくなり困っています (1)∬(D)√x dxdy  D={(x、y);x^2+y^2<=x} 例えば極座標変換を使用しようとしてx=rcosθ、y=rsinθと置いたとしても、円の大きさが変数なので、 ∫(√rcosθ←0)dx∫(7/4π←5/4π)√rcosθ・r dθとなり 計算が困難です。どなたかご教授お願いします   

  • 極座標系における∇×Aの計算

    直交座標系(x,y,z)を極座標系(r,θ,ψ)に変換すると x=rsinθcosψ y=rsinθsinψ z=rcosθ となりますよね。 これを用いて極座標系で∇×Aを計算すると、 その演算結果は以下のようになるらしいのですが、 その導出過程が分かりません。最初の 1/r^2sinθはヤコビアンで補正をかけているような 気がするのですが、その他の項には1/rsinθや1/rが 出てきてこれらが何を表しているのかさっぱり?で、 やっぱり分かりません。宜しければ教えていただけないでしょうか?(第1行目の(^r),(^θ),(^ψ)はそれぞれの 方向の単位ベクトルです。)お願いいたします。 ∇×A= |(^r)/r^2sinθ  (^θ)/rsinθ  (^ψ)/r | | ∂/∂r  ∂/∂θ  ∂/∂ψ    | | A_r    rA_θ   rsinθA_ψ  |

  • 極座標 直交座標

    r=4cosθ 直交座標の方程式で表せ x=rcosθ y=rsinθ とおいてからどうすればよいのですか? 参考書の答えは (x-2)^2+y^2=4 です。 詳しい解説お願いします。

  • 極座標での二重積分

    ∬D[(y^2)/{(x^2+y^2)^3}]dxdy D={(x,y)|x≧0,y≧0,x^2+y^2≧1} この問題の正答がわかりません。 とりあえず、x=rcosθ,y=rsinθとして極座標に変換。すると ∬[{(sinθ)^2}/(r^3)]drdθ すると、θの範囲は0≦θ≦π/2でいいとして、rの範囲がr≧1となってしまい、どう計算したらいいかわかりません。 何か勘違いしているのでしょうか? どなたかご解説いただけるとありがたいです。

  • 座標

    こんにちは。早速質問なんですが 球座標とデカルト座標の関係は x=rsinθcosφ y=rsinθsinφ z=rcosθ この関係はわかるのですがなぜ 線素ベクトルdrや面素ベクトルdSや体積素dV(r^2sinθdrdθdφ)となるのかがわかりません。円筒座標 x=rcosθ y=rsinθ z=z  についても同様にわかりません。 どなたかお願いします。

  • 座標変換式についてです。

    x=rsinθcosφ y=rsinθsinφ z=rcosθ r^2=x^2+y^2+z^2 これより、 ∂^2/∂x^2 +∂^2/∂y^2 +∂^2/∂z^2 の座標変換式を求めたいのですがどのようにして求めれば良いですか?導出方法お願いします。