OKWAVEのAI「あい」が美容・健康の悩みに最適な回答をご提案!
-PR-
解決
済み

シュレーディンガー方程式について

  • すぐに回答を!
  • 質問No.204979
  • 閲覧数696
  • ありがとう数4
  • 気になる数0
  • 回答数3
  • コメント数0

お礼率 77% (161/207)

金属中の自由電子において、シュレーディンガー方程式は
 -h^2/2m・d^2ψ(x)/dx^2=Eψ(x),E=p^2/2m=h^2k^2/2m
であり、ψの一般解はAe^jkx+Be^-jkxとなると専門書に書いてあったのですが、途中の計算過程がどうしてもわかりません。できるだけ詳しく教えてください。お願いします。
通報する
  • 回答数3
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

質問者が選んだベストアンサー

  • 回答No.3
レベル13

ベストアンサー率 26% (324/1203)

応用数学の教科書の「定数係数2階線形微分方程式」のところを見てください。

「応用解析要論」(田代嘉宏著、森北出版)の例8.1(p.24)と同様に解きます。

まず、Ψ(x)=yと置きます。
左側の式のEに、E=h^2k^2/2mを代入して
-h^2/2m・y"=h^2k^2/2m・y
となります。普通に式変形して、
h^2/2m・(y"+k^2・y)=0
です。
特性方程式(応用数学の教科書で確認してください)は、
s^2+k^2=0    ∴s=±ik

これにより、
y=Asin(-kx)+Bcos(kx)
またはy=Asin(kx)+Bcos(-kx)
となります。

また、
y=Ae^(ikx)+Be^(-ikx)
と表すこともできます。

> starfloraさん
物理系の教科書では、電流iと混同しないよう、複素数はjで表す習慣なんです。ややこしいですよね(^^;
すみません、横レスでした。 
お礼コメント
trance79

お礼率 77% (161/207)

参考の教科書まで書いていただきありがとうございました。おかげで悩まされた疑問を解消することができました。これからも御縁があれば、よろしくお願いします。
投稿日時 - 2002-01-26 23:47:56
-PR-
-PR-

その他の回答 (全2件)

  • 回答No.1
レベル13

ベストアンサー率 64% (700/1089)

係数は適当に整理するとして, 2階微分したら同じものが出てきた,ただし符号が変わっている, というのがこの微分方程式の本質ですから,基本解は sin,cos,ですね. 古典力学の調和振動子と全く同じことです. sin,cos にするか, exp(±jkx) にするかは, 単に線形結合で基本解の取り方を変えただけです. ...続きを読む
係数は適当に整理するとして,
2階微分したら同じものが出てきた,ただし符号が変わっている,
というのがこの微分方程式の本質ですから,基本解は sin,cos,ですね.
古典力学の調和振動子と全く同じことです.
sin,cos にするか, exp(±jkx) にするかは,
単に線形結合で基本解の取り方を変えただけです.
お礼コメント
trance79

お礼率 77% (161/207)

即レスありがとうございます。確かに冷静に考えたら、2回微分したら同じものが出てくる関数は指数関数か三角関数しかありませんよね。これらの関数はオイラーの公式で変換できますし。ホント参考になりました。
投稿日時 - 2002-01-26 23:24:10


  • 回答No.2
レベル13

ベストアンサー率 61% (647/1050)

    この場合、一変数の ψ(x) が、xで2回微分すると元に戻るという微分方程式ですから、そういう関数は、普通、e^x しかないはずです。または、係数にマイナスが付くのだとすれば、e^ix です。     この場合、多分、e^ix または e^(-ix) ではないのですか。   この二つが特解ですから、一般解は、この二つの線形結合で、Ae^(ix)+Be^(-ix) ということで、xの係数は、 ...続きを読む
 
  この場合、一変数の ψ(x) が、xで2回微分すると元に戻るという微分方程式ですから、そういう関数は、普通、e^x しかないはずです。または、係数にマイナスが付くのだとすれば、e^ix です。
 
  この場合、多分、e^ix または e^(-ix) ではないのですか。
  この二つが特解ですから、一般解は、この二つの線形結合で、Ae^(ix)+Be^(-ix) ということで、xの係数は、方程式に合うよう、適当に選べばよいということでしょう。k がその係数で、これは分かりますが、j は、虚数単位 i の間違いではありませんか?
 
お礼コメント
trance79

お礼率 77% (161/207)

解答ありがとうございました。今回の件でいかに勉強不足か痛感し、もうちょっと気合を入れ直して勉強頑張りたいと思います。それから虚数単位iの事ですが、may-may-jpさんがおっしゃる通り電流iと混合しないようにjを使ってます。
投稿日時 - 2002-01-26 23:42:45
このQ&Aで解決しましたか?
関連するQ&A
-PR-
-PR-
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-
-PR-
-PR-

特集


いま みんなが気になるQ&A

関連するQ&A

-PR-

ピックアップ

-PR-
ページ先頭へ