• ベストアンサー

n×n複素対称行列の対角化

siegmundの回答

  • siegmund
  • ベストアンサー率64% (701/1090)
回答No.2

siegmund です. 前の回答では nuubou さんのお名前を一部ミスタイプして大変失礼しました. 数学は専門じゃないので,そんなに自信があるわけではありませんが, nuubou さんのお礼を拝見してもうちょっと考えてみました. 確かに,行列について1次独立云々は聞かないような気がします. ただし,例えば2行2列の行列なら,任意の行列は ┌   ┐  ┌   ┐  ┌   ┐  ┌   ┐   │1 0│  │0 1│  │0 0│  │0 0│   │0 0│  │0 0│  │1 0│  │0 1│   └   ┘  └   ┘  └   ┘  └   ┘   の1次結合で表現できるわけですから(要するに,上の4つの行列が基底になっている), 1次独立云々という概念も可能のように思います. もう少し一般的に言うなら, 2行2列の行列を元とするベクトル空間が構成可能です. ベクトル空間の元がベクトル(拡張した意味の)ですから, 2行2列の行列1つ1つをベクトルと思っていることになります. ベクトル空間は (I) 元同士の和がまた元になっていて,結合法則と交換法則が成り立ち, 零ベクトルが存在する. (II) 元のスカラー倍がまた元になっていて, (a+b)x = ax + bx a(x+y) = ax + ay (ab)x = a(bx) 1x = x (a,b は複素数,x,y はベクトル空間の元) が成り立つ. の(I)(II)が満たされればOKです. したがって,2行2列の全体は,普通の行列の加法とスカラー倍によって ベクトル空間を構成します. こうすれば,2行2列の行列の1次独立の話は, 普通のベクトルの1次結合の話に帰着します. こういうことがあるので,行列の1次独立云々は言わないのかも知れません. michikoremon さんが見ていてくれたら,は私も同感です. 所詮,物理屋の数学ですから穴だらけかも知れません. 一応,物理数学なんて授業もやったことあるんですがね(^^;). 数学を専門とされている方のご意見を伺いたいところです.

nuubou
質問者

お礼

従って締め切らないで起きます 非常にご丁寧にありがとうございました

関連するQ&A

  • 対称行列 対角行列

    対角行列と対角化について質問させて頂きます。 対角行列は、対角成分以外が0の正方行列です。 対称行列は、t^A=Aが成り立つ正方行列Aです。 ここで、対称行列の定理で、 ・対称行列の異なる固有値に属する固有ベクトルは直交する。 というものがあるのですが、これは対角行列にも言えるのでしょうか? 対角行列は対称行列なので言えると思いますが、 テキストに特に記載がなかったので質問させて頂きました。 以上、ご回答よろしくお願い致します。

  • 対称行列の対角化

    行列Aの固有値と固有ベクトルを求めよ。また、行列Aを対角化せよ。   (3 1 1) A=(1 2 0)   (1 0 2) っていう問題で、固有値1,2,4は出したんですけど、そこから普通に固有ベクトルを出して対角化しようとしたらうまくいきませんでした。 対称行列では何か特別な方法を使うんでしたっけ? Aは3次の正方行列です。 どなたかわかる方教えてください。

  • 行列の対角化について

    実対称行列A:= | 0 1 2 | | 1 1 3 | | 2 3 0 | に対し、tPAPが対角行列となるような実正則行列Pはどのように求めればよいのでしょうか? この場合は、固有値&固有ベクトルが簡単には求まらないので、簡単には対角化のための行列が求まりません。(たいていの問題では求まるんですが。) このような時は実二次形式を利用して解く、というような事は、色々見るのですが、いざやってみると行列Aの第1行第1列が"0"である事が非常に扱いづらいのです。つまり基本行変形だけで三角行列に変形できないのです。 どなたか教えていただけないでしょうか?

  • 対称行列とその対角化行列

    対称行列とその対角化行列 行列要素が複素数である行列Aが(A^T)=A(Tは転置)を満たすなら,Aは対称行列といいますか?(ネットで見る限りではA^T=Aなどという場合,行列要素は実数である場合が多いようなのですが.) 実対称行列は直交行列で対角化できて,正規行列はユニタリ行列で対角化できますが,行列要素が複素数でA^T=Aを満たすような行列はどのような行列で対角化可能なのでしょうか?普通にユニタリ行列でしょうか?それとも,要素が複素数で(U^T)U=I(単位行列)なる行列Uによってできるのでしょうか? 要素が複素数で(U^T)U=Iなる行列Uに名前はついているのでしょうか? よろしくおねがいします.

  • 対角化不可能な4次正方行列

    行列A= (-1,0,0,1) (0,1,0,0) (0,0,1,0) (4,0,0,-1) について。 Aの固有値を求め、それぞれの固有値に対するAの固有空間の基底を一組求めよ。また、適当な正則行列Pを求めてp^(-1)APが対角行列になるようにせよ。 という問題がわかりません。 自分で計算したところ、λ=-3,1(3重解)と出ました。 λ=-3のとき、基底のひとつはt^(1,0,0,-2)と出ました。 問題はλ=1のときです。(1*E-A)を変形したときのランクは1で、未知数4だから4-1=3>0で対角化不可能です。 このときの固有ベクトルをt^(x,y,z,w)とするならば、z=2xという関係式から t^(1,0,0,2) t^(0,1,0,0) t^(0,0,1,0) を基底に選んだのですが、これは間違っているでしょうか? あと、この後どうやったらいいのかわかりません。 いま出した4つのベクトルを正規化して横に並べても、これはPにはならないですよね。 教えてください。

  • 対称行列を直行行列で対角化

    次の対称行列を直行行列で対角化せよ、という問題で、解き方が分からないので一つずつ順を追って教えていただきたいです。 3 0 0 0 1 2 0 2 1 自分で計算してみて、固有値は-1と3と出たのですが、この値で合っているのか、合っていたとしてこの次に固有ベクトルをどうすれば求めるられるのかが分からないです… よろしくお願いします。

  • 線形代数 行列 対角化

    対角化について質問させて頂きます。 対角化とは、 「正方行列を適当な線形変換により、もとの行列と同値な 対角行列に帰着させること。」 と説明がありました。 ここで、同値とは具体的にどのような内容を指すのでしょうか? また、対角化を求める際、 正方行列Aに対してP^-1APとなる正則行列Pを求めます。 この正則行列Pは正方行列Aより求めた固有値に属する固有ベクトル を並べたものになりますが、これはなぜですか? なぜ、固有ベクトルを並べたものが正則行列Pになるのでしょうか? 以上、ご回答よろしくお願い致します。

  • 行列の対角化

      ┌1 -2 -2┐ A=│1  2  2│   └(-2) 2  1┘ という行列なのですが、対角化できるのでしょうか? 何度も何度も解きなおしてるんですけど対角化できません。 Aの固有方程式の解で重解になっているものがないので対角化は・・可能ですよね? 固有値として-1、±√7が求まるのですが、±√7に対する固有空間を考えるとどうしても固有ベクトルとして成分がすべて0の(3,1)行列しか出てこなく、対角化行列が   ┌0 0 0┐ P=│1 0 0│    └(-1) 0 0┘ といったような行列になってしまうのですが、この場合P^(-1)が存在しないためP^(-1)*A*Pは存在しない事になり、Aは対角化不可能ということになってしまいますよね?? 多分どこか間違った理解をしているところがあると思います。 どなたかご教授お願いできないでしょうか?

  • 固有値が重複している行列の対角化

    線形代数の質問です。 二次行列Aを、ある正則行列Pを用いて(P^-1)APと対角化するときのPを一つ求めよ、という問題があります。ここで、Aの固有値が二つあれば固有ベクトルも二つ求まりそれらを並べることでPがわかりますが、固有値が一つしかない場合はどうしたらいいのでしょうか。 教科書の例題を見ると、A=[a1,a2](a1=[3,-1]、a2=[0,2])のとき、固有値はλ=3で、[λI-A]x=0よりx+y=0となり、固有ベクトルは[1,-1]となります。このあとどのようにして正則二次行列Pを求めればいいのでしょうか。 どなたか御回答よろしくお願いします。

  • 行列の対角化について

    n次正方行列Aがある対角行列と相似の時、行列Aの各特性根αに対する固有空間の次元の和がnになることは分かるのですが、各特性根αの(特性方程式の)重複度と固有空間の次元が一致するのがなぜだか分かりません。どなたか教えてください。お願いします。