OKWAVEのAI「あい」が美容・健康の悩みに最適な回答をご提案!
-PR-
締切り
済み

極限について。

  • すぐに回答を!
  • 質問No.101803
  • 閲覧数199
  • ありがとう数8
  • 気になる数0
  • 回答数5
  • コメント数0

お礼率 22% (22/98)

質問1 左方極限と右方極限の違いはなんですか?
質問2 COSθをθ→+0とすると1ですがCOSθをθ→-0はいくつですか?
質問3 どうやってCOSθ→1(θ→+0)を計算してるんですか?
通報する
  • 回答数5
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

回答 (全5件)

  • 回答No.1
レベル11

ベストアンサー率 67% (126/186)

質問1. monmonmonさんが下で書いているx→ +0とx→ -0の違いです。 関数f(x)で x→+aとしたときの極限がf(x)のaにおける右極限、 x→ -aとしたときの極限がf(x)のaにおける左極限です。 要するにxを正方向から(右側から)近付けた時の極限を右極限 負方向から(左側から)近付けた時の極限を左極限と言います。 そして関数f(x)のaにおける右極限がf(a)に一致す ...続きを読む
質問1.
monmonmonさんが下で書いているx→ +0とx→ -0の違いです。
関数f(x)で x→+aとしたときの極限がf(x)のaにおける右極限、
x→ -aとしたときの極限がf(x)のaにおける左極限です。
要するにxを正方向から(右側から)近付けた時の極限を右極限
負方向から(左側から)近付けた時の極限を左極限と言います。

そして関数f(x)のaにおける右極限がf(a)に一致する時;すなわち
lim_{x→ +a}f(x) = f(a) のときfはaで右連続であると言い、
同様にaにおける左極限がf(a)に一致する時;すなわち
lim_{x→ -a}f(x) = f(a) のときfはaで左連続であると言います。

更に言えば関数f(x)がaにおいて連続であると言うのは
f(x)のaにおける右極限と左極限が一致し、(もちろん各極限が存在しなければいけません)
さらにそれがf(a)に等しい時;すなわち
lim_{x→+a}f(x) =f(a)=lim_{x→ -a}f(x)
となるとき、関数f(x)はaにおいて連続であると言います。

質問2.3
cosθはθ=0で(実はすべての実数で)連続なので、上で書いたようにθ=0における
右極限と左極限は一致し、その値はf(0)に等しくなります。すなわち
lim_{θ→ +0} cosθ =cos 0 = 1= lim_{θ→ -0} cosθ
従って質問2の回答は1です。
また質問3.の回答は単に cos 0 を考えれば良いのです。

ただし極限値が cos 0 になる、と言うのはcosθが連続関数だから言えることであって、
右極限と左極限が等しくない、あるいは左右の極限は等しくてもf(a)の値はそれと
等しくないような関数の場合は単純にf(a)の値を極限値とする、というわけにはいきません。
一般的に極限値を求める方法は問題に応じていろいろなやり方があり、すべての場合
に通用する方法はありません。
補足コメント
monmonmon

お礼率 22% (22/98)

答えてくださってありがとうございます。大変わかりやすいです。
確認を取りたいんですがいいですか?
『関数f(x)が連続⇔右極限=左極限』である!!
それと最後の文の「左右の極限は等しくてもf(a)の値はそれと等しくない」の具体例をあげてもらえませんでしょうか?
投稿日時 - 2001-07-09 22:29:55

  • 回答No.2
レベル11

ベストアンサー率 67% (126/186)

書き直すつもりで回答ボタンを押してしまったので追加します。 本当はcosθが連続関数であることも証明しなければいけないのですが、それをきちんとやるには ε-δ法という方法が必要になります。この方法は理工系の大学へ入れば「解析学概論」などの 授業で真っ先に学習するはずですが、受験問題なら「グラフがつながっているからcosθは連続」 と言ってしまっても問題はないと思います。 (本当に大丈夫かどう ...続きを読む
書き直すつもりで回答ボタンを押してしまったので追加します。

本当はcosθが連続関数であることも証明しなければいけないのですが、それをきちんとやるには
ε-δ法という方法が必要になります。この方法は理工系の大学へ入れば「解析学概論」などの
授業で真っ先に学習するはずですが、受験問題なら「グラフがつながっているからcosθは連続」
と言ってしまっても問題はないと思います。
(本当に大丈夫かどうかは自信がないので高校数学のカリキュラムおよび大学受験問題に詳しい方
のフォローをお願いします。)
  • 回答No.3

質問1 左方極限と右方極限の違いはなんですか? 極限を左から近づけるか、右から近づけるかです。 質問2 COSθをθ→+0とすると1ですがCOSθをθ→-0はいくつですか? cosθのグラフから考えると(常に連続ですし)、cosθをθ→-0と したとき1になりませんか?cosθのグラフは0から2πの動きを1周期とし、 ひたすらそれを繰り返しますから。 また、θ=-kとおくと、 ...続きを読む
質問1 左方極限と右方極限の違いはなんですか?

極限を左から近づけるか、右から近づけるかです。

質問2 COSθをθ→+0とすると1ですがCOSθをθ→-0はいくつですか?

cosθのグラフから考えると(常に連続ですし)、cosθをθ→-0と
したとき1になりませんか?cosθのグラフは0から2πの動きを1周期とし、
ひたすらそれを繰り返しますから。

また、θ=-kとおくと、求める値はcos(-k)をk→+0ですね。
cos(-k)=coskなので1ですよね。

質問3 どうやってCOSθ→1(θ→+0)を計算してるんですか?

単純に考えて、
COSθは直角三角形のθの角を共有している辺の比ですよね。
θが小さくなれば、斜辺ともう一つの辺の長さが同じくらいに
なるのでは?というのはどうでしょうか?
お礼コメント
monmonmon

お礼率 22% (22/98)

回答ありがとうございます。三番目の解説がとってもわかりやすかったです。もうすぐ夏休みですね。勉強も大変になると思いますので、質問回数も増えます。その時には、どうかよろしくおねがいします。
投稿日時 - 2001-07-09 22:45:40
  • 回答No.4
レベル4

ベストアンサー率 33% (1/3)

質問1の補足です。 例えば、x/|x|で説明します。 x=0における左極限は、負の側から近づけるので、|x|=-x となり、-1 x=0における左極限は、正の側から近づけるので、|x|=x となり、1 このように、左方極限と右方極限が異なるもので考えるとイメージしやすいと思います。 1/x などもx=0における右方極限と左方極限の異なるものです。 蛇足:高校における連続の定義ですが、 l ...続きを読む
質問1の補足です。
例えば、x/|x|で説明します。
x=0における左極限は、負の側から近づけるので、|x|=-x となり、-1
x=0における左極限は、正の側から近づけるので、|x|=x となり、1
このように、左方極限と右方極限が異なるもので考えるとイメージしやすいと思います。
1/x などもx=0における右方極限と左方極限の異なるものです。

蛇足:高校における連続の定義ですが、
lim(x→a+0)f(x)=lim(x→a-0)f(x)=f(a)が成り立つとき、
f(x)はx=aで連続であるといい、全ての実数aでこれが成り立てば、
f(x)は連続関数である、といいます。
f(θ)=COSθ は連続関数ですから、右方極限と左方極限を意識する必要はありませんので、単純にθ→0のとき1でいいと思います。

さらに蛇足:
A(1,0)と原点Oを中心とする半径1の円があって、
この円周上の点P(x,y)に対し、「反時計回りに」∠OAPを計った角に対する弦の長さ(方向付)をθとすると、sinθ=y,cosθ=x である。
θ=0のとき、点PはA(1,0)と一致するから、cos0=1 です。
補足コメント
monmonmon

お礼率 22% (22/98)

x/|x|の説明について教えてください。
x=0における左方極限は、負の側から近づけるので、|x|=-xとなり、-1である。の所で疑問点が出てきました。
負の側から近づけるので、|x|=-1はいいんですが、そしたら、-x/xとなり約分されて-1になります。確かに答えは一致しますがどこでx→-0を用いてるんですか?別にx→0でなくてもよいことにはなりませんか?(だって約分されて-1になるんだから)
補足よろしくおねがいします。
投稿日時 - 2001-07-09 22:52:00
  • 回答No.5
レベル11

ベストアンサー率 67% (126/186)

補足質問にお答えします。 >『関数f(x)が連続 ⇔ 右極限=左極限』である!! 『関数f(x)が連続 ⇒ 右極限=左極限』は正しいですが逆は言えません。 それは次の補足質問に対する回答のように「左右の極限は等しくてもf(a)の値はそれと等しくない」 ものがあるからです。 最初の回答に書いたようにf(x)は連続というのは 「左右の極限が等しく、かつf(a)の値もそれと等しい」 場合です。( ...続きを読む
補足質問にお答えします。
>『関数f(x)が連続 ⇔ 右極限=左極限』である!!
『関数f(x)が連続 ⇒ 右極限=左極限』は正しいですが逆は言えません。
それは次の補足質問に対する回答のように「左右の極限は等しくてもf(a)の値はそれと等しくない」
ものがあるからです。
最初の回答に書いたようにf(x)は連続というのは
「左右の極限が等しく、かつf(a)の値もそれと等しい」
場合です。(下の例のようなグラフを考えてみればわかると思います)

>「左右の極限は等しくてもf(a)の値はそれと等しくない」の具体例
グラフを書いてみれば簡単にわかります。ついでですから
左右の極限が等しくない例と一緒に考えてみましょう。aは原点とします。
1.
f(x)=x-1 (x≦0)
f(x)=x+1 (x>0)
右極限と左極限が異なり、かつf(a)は左極限と等しくなる例です。

2.
f(x)=x-1 (x<0)
f(x)= 0 (x=0)
f(x)=x+1 (x>0)
右極限と左極限が異なり、かつf(a)はどちらの極限とも等しくない例です。

3.
f(x)= 0 (x=0)
f(x)=x+1 (x≠0)
右極限と左極限は一致し、かつf(a)はどちらの極限とも等しくない例です。

4.
f(x)=x
右極限と左極限は一致し、かつf(a)もその極限とも等しくなる例です。
(連続というのはこの場合です。)


ついでですからGstavさんの回答に対する補足質問にも回答しておきましょう。
>どこでx→-0を用いてるんですか?別にx→0でなくてもよいことにはなりませんか?

f(x)のaにおける極限と言うのはxをaに近付けていった時に近付く値であって、a以外でのxの値
というわけではありません。
f(x)=x/|x|のグラフは下のようになります。(x=0では定義されない)
この場合f(x)はx<0で「定数」ですが、それでも「関数」であることに変わりはありません。
従って「関数」としての極限を考えると
lim_{x→ -0}f(x) =lim_{x→ -0} -1 = -1
ということになります
この場合はたまたま関数の値が定数なのでx → -0としなくても x → -0とした場合の極限値
と等しくなっているだけのことです。このグラフを45°傾けたもの;すなわち
f(x)=x-1 (x<0)
f(x)=x+1 (x>0)
のグラフを考えてみればわかると思います。
     y
     │      
     ○━━━━━ 
     │      
     │      
     │      
─────┼───── x
     │      
     │      
     │      
━━━━━○      
     │      
このQ&Aで解決しましたか?
-PR-
-PR-
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-
-PR-
-PR-

特集


いま みんなが気になるQ&A

-PR-

ピックアップ

-PR-
ページ先頭へ