• ベストアンサー

ドップラー効果

Vec(u):ベクトルu 音速:c=331m/s 振動数ω_0の音源が一定速度Vec(u)で動いている場合、観測される振動数は ω=(ω_0c)/(c-ucosθ) θ:音波の波数ベクトルVec(k)とVec(u)のなす角 線路から30m離れたところで、時速100kmで通過する電車の警笛の振動数を測定したとする。測定した振動数の時間変化を求めよ。ただしt=0で警笛がもっとも近接したとする。 という問題で、結果は 警笛の振動数をω_0とするとω=ω_0[1+0.07t/sqr(1+0.8t^2)]^{-1} となるらしいのですが、このことがうまく導けなくて困っています。 それに、この式だとt=0のときω=ω_0/2になるんですよね・・・。本当にいいんでしょうか・・・。

質問者が選んだベストアンサー

  • ベストアンサー
  • Rossana
  • ベストアンサー率33% (131/394)
回答No.1

時刻t=0で警笛がもっとも近接したとすると,以降は警笛はどんどん遠ざかって行きますね. 以下紙と鉛筆を持って絵を書いて考えて下さい. 線路からの観測地点までの距離:h=30 m, 電車の速さ:u=100 km/h≒27.8 m/s ω=(ω_0c)/(c-ucosθ) =ω_0/{1-(u/c)cosθ} =ω_0[1-(u/c)cosθ]^(-1) ここで,cosθをtを使って表します. 図より, cosθ=-(ut)/sqrt{h^2+(ut)^2} を代入. ω=ω_0[1-(u/c)cosθ]^(-1) =ω_0[1+(u/c)(ut)/sqrt{h^2+(ut)^2}]^(-1) =ω_0[1+(u/c)(ut)/{h・sqrt{1+(u/h)^2t^2}]^(-1) =ω_0[1+(u^2/h/c)t/sqrt{1+(u/h)^2t^2}]^(-1) 値を代入すれば同じ式が出てきます. >それに、この式だとt=0のときω=ω_0/2になるんですよ>ね・・・。 計算ミスしたのでしょうかね.t=0ではちゃんとω=ω_0になります. 分からないところがあればまた補足ください.では!

msndance
質問者

お礼

あ、すいません。なんか計算ミスしてました。 ルートの中身に何で1とか出てくるのかなーと思ってたもんですから。 割ればよかったんですね。

関連するQ&A

  • ドップラー効果

    通り過ぎる電車の警笛を線路のわきで聞いていると、通過する前後で音の振動数が7/10倍に下がった。 音速を3.4*10^2m/sとして、このときの電車の速さは何m/sか。 A…60m/s やり方詳しく教えてください。

  • ドップラー効果の計算について

    ご回答者さま こんばんわ。たびたび小学校の算数です・・・。 ドップラー効果について質問させていただきます。 問題は次の通りです。 「踏切にいたAさんに電車が速さ20m/sで接近してきた。 この電車が700Hzの警笛を鳴らしていた際の、 Aさんが聞く音の振動数を求めなさい。気温は15℃」 この問題では、「音速」がないので、 振動数を求めるのはできないように思えるのですが・・・。 ご存知の方がいらっしゃいましたら、 お教えいただければ助かります!

  • [ ドップラー効果 ]

    [ ドップラー効果 ] 左から音源、観測者、壁の順に並び,音源と観測者が壁から速さ v[m/s] とu[m/s](v > u)で一直線上を遠ざかり,同じ方向に風速 w[m/s] の一様な風が吹いている。壁からの距離が、音源,観測者の順に、S1、S2になった時、音源は振動数 f[Hz] の音の発生を開始し,t0[s] 後に音の発生を終了した。無風時の音速を c[m/s] とする。 (1) 音源が音の発生を開始してから観測者がはじめて音を聞くまでの時間を求めよ。  答え  音は風上に伝わるから,音速をc-wとする。さらに,観測者が音源に速さuで近づくから,観測者に対する見かけの音速 c' は c’=c-w+u となる。観測者に対する音波の相対的な運動を考えると,音波は距離S1-S2を速さ c' で近づいてくるから,音波が音源から観測者に伝わるまでの時間は S1-S2/c' [s]    という答えなんですが、‘音波は距離S1-S2を速さ c' で近づいてくるから’が納得いきません。観測者と音源は動いているのだから、距離S1-S2ではない気がします。どういうことですか?

  • ドップラー効果の問題についてです

    Rは反射板、Oは観測者、Sは振動数f0の音源 Rが右へV、Oが右へu、Sが右へvで動く時のOが観測する 直接音、反射音の振動数をもとめよ ただし音速はcとする という問題の、反射音について疑問があります 反射音はS→R→Oと伝わる(音源から壁、壁で反射して人に)わけで、 模範解答は(1)Sで波長が圧縮され、(2)Rで音速が遅く見え、(3)波長が引きのばされ (4)Oで音速が速く見える との考え方で f=(c+u)(c-V)/(c+V)(c-v)*f0 となっています ですが、(2)の過程、Rで音速が遅く見える、という現象が関わるのは~Rの道筋だけ (4)も、RからOまでの間だけに関わる現象と思うのです だから、結果としてOが観測するfに関わるのはおかしいと思うのですが… これはどういう解釈をしたらいいのでしょうか また、(3)の波長が引きのばされる、とは、Rが遠ざかるから波長が引きのばされ そののばされたものがそのまま反射するから結果のfにもかかわる、と考えていいのですか? わかりにくい文章で申し訳ありませんが、どなたかわかる方がいらっしゃいましたらご回答いただきたく思います。

  • 音のドップラー効果の計算について

    自分の答えがあっているのかわからない問題があったので教えてください。 自動車が400Hzのサイレンを鳴らしながら40.0m/sの速さで、静止している観測者に近づき、 直前を通過して遠ざかっていった。無風で音速を340m/sとして、次の各問いに答えよ。 (1)自動車が観測者に近づいているとき、観測者が聞くサイレンの音の振動数は何Hzか。 自分は f=V-u/V-v*f0 f[Hz]観測される振動数 f0[Hz]音源の振動数         V[m/s]音速 u[m/s]観測者の速度 v[m/s]音源の速度 を利用して式を立てて、それを計算したんですが 答えが453.333333…になってしまいました。 でも問題の中に四捨五入しろとか、少数第何位まで求めよとか書いていないので 本当の答えは整数になるのかな?と思って困っています。 もしかして計算間違いや式を間違えてしまったのでしょうか?

  • 高校物理 ドップラー効果

    ドップラー効果の問題について 観測者に対して音源が近づいて来ているところに、音源から観測者に向けて速さが音速より遅い風が一様に全ての場所で一斉に吹き始めたとし、その時刻を0とする。 このとき、観測者が観測する音波の振動数が 風の吹く以前の振動数から時刻0にて変化し、その後にある時刻tでまた変化しているのですがなぜ二回変化しているのかがわかりません。 解説お願いします

  • ドップラー効果

    かつて光は宇宙に充満しているエーテルという媒質によって伝わっていると考えられていた。 ここで、光は静止したエーテルに対して一定の速さcで伝わるとします。話を一般的にするために、木星に置かれた正確な時計を地球で観測して地球の正確な時間と同時に読み取っていると考える。 これら2つの時計の読みはこれにかかる時間だけずれることになる。 ここで木星の周囲を回る衛星イオを地球から見ると、木星に隠されて見えなくなる現象である「食」が周期的に起きている。 ここで、問題ではイオから発せられる始めの光の出発時刻を(t'_1),地球への到着時刻は(t_1)とし、次に発せられる光の出発時刻を(t'_1+T'),到着時刻は(t_1+T)であるとします。時刻t_1とt_1+Tの間に地球が動いて木星との距離がd_1からd_1+Dに変化したとする。光の速さはcであるからd_1=c(t_1-t'_1)などが成り立つ。 地球の時計の経過時間Tと木星の時計の経過時間T'の比をc,D,Tで表わすとT/T'=cT/(cT-D)となる。 ここでイオの実際の食の周期をP'とすると、地球が木星から遠ざかる速さがVであるとき食の周期は地上ではT→P,T'→P'とみなして、D=VPであるからP=cP'/(c-V)と観測されることになる。 このことは光の振動の周期にも適用できるから、同じ状況のもとで木星にある原子から出た振動数f'の光を地球でとらえると振動数は1/T→f , 1/T'→f'であるからf=(c-V)f'/cとなる。 振動数が変わるこのような現象をドップラー効果という。 地球に対する光の速さも変わる。一方、観測される光の波長はV=0の場合の(?)倍になる。 この(?)に入る数字について考えたいと思います。 解説では木星の波長をλ',地球での波長はλとする。木星はエーテルと共に静止しているとしているので、木星での光の速さはcで、地球に対する光の速さはc-Vである。また、V=0の場合は木星での波長と同じである。 よって、λ=(c-V)/f=(c-V)・c/(c-V)f'=c/f'=λ' ∴1倍 この解説に疑問があります。 まず、問題文に地球に対する光の速さも変わる。とありますが、これはなぜですか? 現代の物理学では光の速度は不変であると考えられており、これを原理としてアインシュタインは相対性理論を考えたのですよね。 解答にもλ=(c-V)/fというように式を作っておりますが、地球が光よりも遅い速さでどのように動いていたとしても、それは光にとっては全く無関係なことではないのでしょうか。 つまり、λ=c/fとするのが正しい考え方ではないのですか? なぜ地球がVという速さで木星から遠ざかっているからといって、地球に対する光の速度が変わるということが理解できません。 自分の考え方が違うのだとは思いますが、もしも仮にこれが正しいのだとしたら、アインシュタインが考えた相対性理論が矛盾しているということになりませんか。

  • ドップラー効果の問題

    「静止している水素原子はλ0の光を出す。ある星雲からの同じ光を調べたらλ0より長いλ1の波長になっていた。この星雲は地球に近づいているか、遠ざかっているか。またその速さvはいくらか。光速をcとし、地球は止まっているとしてよい。」 という問題があって、解説では波長が長くなっているから、振動数は減っているから遠ざかっていると書いてありましたが、なぜ振動数が減ると遠ざかっているとわかるのでしょうか? 後,f1=c/cー(ーv)・f0と書いてありましたが、 公式のf=Vーu/Vーv・f0は使わないのでしょうか? あとf1=c/cー(ーv)・f0の続きにc/λ1=c/c+v・c/λ0 ∴v=λ1ーλ0/λ0・cとなっていたのですが、ここの式がどのように成り立っているのかわからなくて困っているので教えてください。お願いします!

  • センター物理 ドップラー効果 円運動

    図1のように鉛直線l上の点Pに変形しない棒の一端を取り付け、棒をlに対して角θだけ傾けて一定の速さで回転させた。 棒の他端には一定の振動数fの音を出し続ける小さな音源Sが取り付けられていて点Oを中心に水平面内で速さvの等速円運動をしている。 ただし、音速をVとし、V>vとする。また、風は吹いていないとする。 問 次の文章中の空欄ア、イに入れるものを答えよ 音源Sから観測者に届く音の振動数をいろいろな場所で観測者が観測する。ただし、観測者は音が聞こえる範囲内で静止した状態で観測するものとする。観測できる振動数で最大値はアである。 この実験を気温を上げる事で音速を変えて行うと、観測できる振動数の最大値は元の値よりイなることが分かった。 解説 音源Sと静止している観測者を結ぶ方向の音源Sの速度の成分を観測者の向きを正として、v[s]とする。観測者が聞く音の振動数f'はf'=Vf/(V-v[s])である。 取り得るv[s]の範囲は-v<=v[s]<=vであるから観測者が聞く音の振動数の最大値は f'=Vf/(V-v)である。 気温t(℃)における音速はV=331.5+0.6t(m/s)で与えられることが知られており、音速は気温が高くなるほど、大きくなる。 観測者が聞く音の振動数の最大値f'はf'=f/(1-v/V)であるから、気温が高いほど音速Vが大きくなり、f'は小さくなる。 とあったのですが音源は観測者の周りを円運動しているのでどこで聞いても振動数は分からないのではないんですか?何故最大の振動数などがあるのでしょうか?図3-1のv[s]がどういう方向に進んでいるのか分かりません、vは観測者の周りを円運動する速さですよね? 観測者はどこまで動いてもいいのでしょうか?v[s]の範囲が-vからvになるというのも何故なのか分かりません

  • 光のドップラー効果について

    こんばんは。 今独学で相対性理論を勉強しているのですが、特殊ローレンツ変換から光のドップラー効果を導き出す場面でわからないところがあったので質問させていただきました。 振幅がA、振動数がν、波長がλの波は Asin2π(1/λ・n・x-νt+α) (ただしnは波の進行方向の単位ベクトル、xは位置ベクトル、αは位相) で表わされる。 ここまでは何の問題もないのです。次に、 波が腹となるか節となるかは慣性系S、S'のいずれから眺めても違いはないはずだから、 1/λ・n・x-νt=1/λ'・n'・x'-ν't' となる。 と書かれているのですが、なぜこのようになるのかピンときません・・・ どなたか教えていただけないでしょうか。 ちなみに慣性系Sは観測者に対して静止している座標系、S'はSに対してx軸正方向のみに等速vで運動している座標系です。