• ベストアンサー

lim an+bn = lim an+lim bn

n→∞ (1) lim an + bn = lim an +lim bn (2) 定数 c ∈R に対して, lim c an = c lim an (3) lim anbn = lim an lim bn, 証明を教えてほしいです

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

高校の数学では証明なしに(「天下り的に」)成り立つのだと教えられますね。ですからこの証明は大学で初めて学ぶ内容だと思います。 添え字が使えないので,ここでは第n項をa(n)で表すことにします。 極限を厳密に述べるためには俗にε-δ論法などと言われる方法で論じられます。 例えば,xを限りなくaに近づけた時のa(n)の極限値がαであること(つまりlim[x→a]a(n)=α)を 「任意の正の実数εに対して,|x-a|<δ⇒|a(n)-α|<ε となる正の実数δが存在する」 と述べるのです。 nを限りなく大きくしたときのa(n)の極限値がαであること(つまりlim[n→∞]a(n)=α)は 「任意の正の実数εに対して,n>N⇒|a(n)-α|<ε となる正の整数Nが存在する」 ですね。 (1)について εを任意の正の実数とする。 lim[n→∞]a(n)=α,lim[n→∞]b(n)=βとすると,ε/2に対して n>N⇒|a(n)-α|<ε/2,|b(n)-β|<ε/2 となる正の整数Nが存在する。 このとき,この正の整数Nにたいして n>N⇒|a(n)+b(n)-(α+β)| =|(a(n)-α)+(b(n)-β)|≦|(a(n)-α)|+|(b(n)-β)|<ε/2+ε/2=ε となって, lim[n→∞](a(n)+b(n)=α+βが証明されました。 (2)についても定数をくくるだけですから略します。 (3)についてはNo.1の回答者のとおりです。

その他の回答 (1)

  • gamma1854
  • ベストアンサー率54% (287/523)
回答No.1

式の表記にもう少し気をつかってください。 3) lim[n→∞] a[n]*b[n] = ( lim a[n] ) * ( lim b[n] ). まず、与えられた正数ε1(いかに小さくてもよい)に対し、十分大きな正数Gをとると、n>G なるすべての番号nについて、 |a[n] - α| < ε1、|b[n] - β| < ε1. とできます。 | a[n]*b[n] - α*β | ≦ | a[n] - α | * | b[n] - β | + |α| * | b[n] - β | + |β| * | a[n] - α |. ですから、ε=min{ 1, ε1/(1+|α|+|β|) } にとれば、n>G で、| a[n]*b[n] - α*β | < ε とできることになります。

関連するQ&A

  • lim(An+Bn)=limAn+limBn の証明

    ・lim(An+Bn)=limAn+limBn ・lim(AnBn)=limAn×limBn この2つの証明せよ 大学1年生です。 お願いします

  • 数学についての質問です

    lim(n→∞)AnBn=(lim(n→∞)An)(lim(n→∞)Bn)の証明です An→α、Bn→βで αβ―AnBn=(α‐An)β+An(β‐Bn) ここで|β|<M、|An|<Mとすると |αβ‐AnBn|≦M(|α‐An|+|β‐Bn|)となるらしいんですがよくわかりません 数学があまり得意ではないのでわかりやすくお願いします。

  • {An}が An>0 lim[n→∞]An=α(0≦α<1) を満たす

    {An}が An>0 lim[n→∞]An=α(0≦α<1) を満たすとき lim[n→∞]A1A2…Anを証明つきで求めよ 0に収束すると予測できますが証明がわかりません |b|<1のときlim[n→∞]b=0は既知とします

  • lim[n→∞]an/bn=a/bの証明法を教えてください。(εーN)

    極限の最初の所で行き詰って困っています。 lim[n→∞]an=a,lim[n→∞]bn=bの時 lim[n→∞]an/bn=a/bの証明についてです。 証明 (lim[n→∞]an・bn=abを証明済みという前提で)・・・※ ※より、lim(1/bn)=1/bを証明すれば十分。 |1/bnー1/b|=|bnーb|/(|bn||b|) b≠0だから∃N´;|bn|≧|b|/2 (n≧N´)・・・※※ また、∀ε>0,∃N;|bnーb|<ε (n≧N) よって |1/bnー1/b|=|bnーb|/(|bn||b|)<2ε/|b|^2 (n≧max(N,N´)) 分からないのは※※の部分 |bn|≧|b|/2の式で、この式がどこから出てきたのかが分かりません。 分かる方、よろしくお願いします。

  • 数列AnとBnについて、An=αに収束し、Bnはβ

    数列AnとBnについて、An=αに収束し、Bnはβに収束するとする。このとき、 lim(An+Bn)=α+β をε-N論法で示せ。 お願いします

  • 収束する数列に関する定理の証明についての質問。

    教科書に載っている証明なのですが・・・ lim An=α、lim Bn=β とするとき、 n→∞   n→∞ An≦Bn (n=1,2,…)であればα≦βである。 【証明】 もしα>βであるとし、c=α-β( >0)とする。 lim An=α、lim Bn=β より、 n→∞   n→∞ nが十分大ならば、|An-α|< c/2、|Bn-β|< c/2であり、 したがってAn-Bn >0となり仮定に反する。 それで疑問に思ったのが、なんで突然c/2が出てきたのかと。 このc/2はなに者? |An-α|< c/2、|Bn-β|< c/2 により なぜAn-Bn >0が言えるのかわからないのです。 助けてください><

  • 数列の極限の証明

    「a1=a,b1=b,(a>b>0) a(n+1)=(an+bn)/2 b(n+1)=anbn^1/2 で定まる二つの数列{an},{bn}は同じ極限値を持つことを示せ。」 という問題を解いていて、このリンクの証明を見たのですが、 http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1463528674 証明の最後で、a_n+1=ka_n を満たす1より小さい正の実数kが存在することから、 a_n=k^(n-1)*a1 として、n→∞でa_n→0としていましたが、 a_n=f(n)として、f(x)が単調減少関数でf(n+1)=k_n(fn) (k_nはnによって変化する1より小さいある正の定数)となっても、 k_nはnに依存するので、必ずしもx(またはn)→∞でf(x)(またはf(n))→0になるとは限らないのではないのでしょうか。(ex. k_n→1 (n→∞), f(x)=(1/x)+(1/2)) その可能性はないのでしょうか? 以下がリンク先の証明の全文です。 与えられた漸化式と0<a<bより帰納的に0<an,0<bnとなる。 すると相加・相乗平均の関係より a(n+1)/b(n+1)=(an+bn)/2√(anbn) =(1/2){√(an/bn)+√(bn/an)}≧(1/2)*2*√(an/bn)*√(bn/an) =1 ∴b(n+1)≦a(n+1)となる。 ここで等号が成り立つとすると bn=anより a(n+1)=(1/2)(an+bn)=(1/2)*2an=an となり an=a(n-1)=…=a1=a=b1=b となりa<bに矛盾する。 よって等号は成立しないので b(n+1)<a(n+1) となり、したがって bn<an…(*) となる。 すると an+bn<2anより a(n+1)=(1/2)(an+bn)<(1/2)*2an=an となる。 したがって0<anより a(n+1)=k*an を満たす1より小さい正の実数kが存在する。 すると an=k*a(n-1)=k^2*a(n-2)=…=k^(n-1)*a1=k^(n-1)*a となるから lim[n→∞]an=a*lim[n→∞]k^(n-1)=0…(**) となる。 すると(*)と0<bnより 0<bn<an だから(**)からはさみうちの原理により lim[n→∞]bn=0 となる。 よって lim[n→∞]an=lim[n→∞]bn=0 となる。

  • 数列{an},{bn}は次のように定められている

    数列{an},{bn}は次のように定められている 1 ,a(1)=0,b(1)=1 2 nが偶数のとき、an=1/2(a(n-1)+b(n-1)),bn=b(n-1) 3 nが奇数のとき、(ただし、n≧3) an=a(n-1),bn=1/2(a(n-1)+b(n-1)) (1)an-bnをnの式で表せ (2)anをnの式で表せ。 どなたか教えていただけないでしょうか?

  • 漸化式a1=c, an+1= √(an + 2)(n=1,2 ,…)によって定まる数列{an}を考える。

    (1)漸化式a1=c, an+1= √(an + 2)(n=1,2 ,…)によっ て定まる数列{an}を考える。ただしcはc≧-2をみたす定数と する。anを求めよ。 <解答> 極限値があるとしその値をxとおき、漸化式においてn→∞の極限をとると、 x=lim(n→∞)an+1=lim √(an + 2)=√(x+c)を得る。 x≧0でなければならないことに注意して、両辺を2乗すると x^2-x-2=0 この2次方程式の正の実数解x=2を得る。 従って、lim(n→∞)an が存在するなら値は2でなれけばならない。 次に実際2に収束することを示す。 an+1 - 2= √(an + 2)-2 ここで、分母分子に √(an + 2)+2を掛けると an+1 - 2=(an - 2)/ {√(an + 2)+2} √(an + 2)+2≧2より (an - 2)/ {√(an + 2)+2}≦ (an - 2)/ 2 はさみうちの原理より、 an - 2≦(an-1 - 2)/ 2≦(an-2 - 2)/ 2^2≦(an-3 - 2)/ 2^3≦・・・ ・・・≦(a1 - 2)/ 2^(n-1) よって、n→∞とすると。右辺→0。すなわち、an - 2→0 ∴lim(n→∞)an=2 上のように解いたのですが、はさみうちの説明が不十分でしょうか? 助言をお願い致します。

  • 数式{An}、{Bn}の一般項

    (2+√3)^n=An+Bn√3により定められた数列 正の整数nに対して、正の整数An、Anを(2+√3)^n=An+Bn√3と定めます。 数式{An}、{Bn}の一般項を求めよ。 という問題が出たんですが。 (2+√3)^n=a[n]+b[n]√3 (2-√3)^n=a[n]-b[n]√3 としてやっていたいいと思うのんですがやり方がわ忘れてしまってできないんです。 誰か教えていただけないでしょうか? よろしくお願いします。