• ベストアンサー

数学的帰納法

数列anを a1=1, a2=1, an=an-2+an-1(n=3,4,5) で定義する。 このとき、すべての正の整数に対して次の不等式が成り立つことを数学的帰納法を用いて証明せよ。 という問題で 解答では n=1,2のとき成り立つことを示して n=k,k+1のとき成り立つと仮定して n=k+2のとき成り立つことを示す と書いてあるのですが、 n=1のとき成り立つ、 n=kのとき成り立つと仮定、 n=k+1のとき成り立つ にしないのはなぜですか? 教えてください お願いします!!m(_ _)m

質問者が選んだベストアンサー

  • ベストアンサー
noname#252159
noname#252159
回答No.4

漸化式の特徴として、   anは、その前の項an-1とその前々の項an-2の2つの項に形成されているからですね。

その他の回答 (3)

  • notnot
  • ベストアンサー率47% (4848/10262)
回答No.3

>証明できないとわかるんですか? できるのであれば、そういう解答になるはずだけど、そうなっていないからです。

monxbe_ftb
質問者

お礼

ありがとうございますm(_ _)m

  • notnot
  • ベストアンサー率47% (4848/10262)
回答No.2

>にしないのはなぜですか? その仮定では「n=k+1のとき成り立つ」を証明できないからです。

monxbe_ftb
質問者

補足

なぜn=k+1では成り立つことを 証明できないとわかるんですか? よろしければ教えてくださいm(_ _)m

  • asuncion
  • ベストアンサー率33% (2126/6288)
回答No.1

3項に関する数学的帰納法を使おうとしているからでしょう。

monxbe_ftb
質問者

お礼

解答していただき、 ありがとうございますm(_ _)m

関連するQ&A

  • 数学的帰納法

    数学的帰納法 以下の問題の解き方を教えてください nを自然数とするとき、次の不等式が成り立つことを証明せよ 2^n≧n^2-n+2 鈍角三角形の3辺の長さが黄砂r(r>0)の等差数列となっているとき、最小の辺の長さaの範囲を、rを用いてあらわせ。 数直線上に点A1(0)、A2(1)をとる。n≧1に対し、線分AnAn+1を4:1に外聞する点をAn+2(an+2)とするとき、 anをnの式であらわせ。 ただし、a1=0, a2=1 下の2題は数列の応用です。 よろしくおねがいします

  • 帰納法の問題です。 困っています。

    正の整数からなる数列[an]を、 an=[13]^n +2[23]^n-1 で定める。 an(n=1.2.3....)のすべてに共通する素因数分解が、 存在することは、数学的帰納法を用いて示せ。 困っています。宜しくお願い致します。

  • 数学の問題  私の答え 合ってますか?

    数列(an )初項a1 から第 n項までの和をSnとあらわす。 この数列が、 (n+2 )an=3Sn を満たす。 数列 anの初項a1が整数である時、Snは、整数であることを示せ。 この問題で、 (n+2 )a(n)=3S(n) (n+1 )a(n-1)=3S(n-1) n≧2 からanを求めて、 (n+2)an =3Sn (n+1)an-1=3Sn-1(n≧2) これから a(n)-a(n-1)=3a(n) a(n)=-1/2a(n-1) 以下 数学的帰納法を用いて n=2 a(2)=-1/2a(1) 整数 n=k a(k) =-1/2a(k-1) コレを整数と仮定すると n=k+1 a(k+1)=-1/2a(k) a(k)が整数なので、a(k+1)も整数 数学的帰納法により すべての自然数で、a(n)は、整数。 よって、 Sn=Σak=a1(1-(ー1/2)^n )/1-(-1/2) コレで、Snも整数であることが示せた これは、正解でしょうか??? お願いします。

  • 数学的帰納法の不等式の問題です

    数学的帰納法の不等式の問題です。 nは自然数とする。不等式 2n が成り立つことを、数学的帰納法を用いて証明せよ n=1のときはわかるのですが、n=kのとき成り立つと仮定してn=k+1のときに成り立つことを証明する解き方がわかりません。 教えてください!

  • 【数学B】数学的帰納法 発展問題

    まず、問題を書きます。 /////////////////////////////////////////// 問 nは自然数とする。数学的帰納法によって、次の不等式を証明せよ。 1) 1^2+2^2+3^2+・・・・・・+n^2<(n+1)^3/3 /////////////////////////////////////////// 見にくいですが。 解答を見てみたのですが、何か僕にとって大事なところが抜けていて、何言ってるかわかりませんでした。 帰納法で i)n=1のとき ii)n=kのとき で考えるところまでは分かりますが、n=kでnにkを代入した式を仮定するまでしか駄目でした。 この数学的帰納法の証明方法はいくつかあると思いますが、 一番、簡潔で分かりやすく証明できる方法を教えてください。 お願いします。

  • 数学的帰納法について

    数学的帰納法について質問があります。 数学的帰納法の問題で http://www.geisya.or.jp/~mwm48961/kou2/inductive_method3.htm のnが〇以上(〇には具体的な数値が入ります)のとき 証明せよ の問題の解き方は理解できるのですが考え方に不明な点があります。 __________________________________________________ 数学的帰納法は (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(A)が成り立つことを仮定する. その仮定を使って n=k+1 のとき(A)が成り立つことを証明する. __________________________________________________ とのことですがkは任意に自然数として理解をしていましたがこの考え方をすると、 nが〇以上の時について証明せよ。において (I) n=〇のとき(A)が成り立つことを証明する. (II) n=kのとき(k>=〇)(A)が成り立つことを仮定する の(k>=〇)の条件を書く必要があるのかがわかりません。 すなわち、 私が考えているのは、 (I) n=〇のとき証明できたのだから (II) n=kのとき(k>=〇)ではなくn=kのとき(k>=〇+1) と何故書かないのかということに疑問があります。 そのため、 すべての自然数 n について,次の不等式が成り立つことを証明せよ. の問題では、 (I) n=1 のとき(A)が成り立つことを証明する. (II) n=k のとき(k>=1)(A)が成り立つことを仮定する. と書かないのか という内容に混乱をしています。 これについて先生に尋ねてみたら すべての自然数において問題は自然数1から必ず行うものだから (k>=1)というのは暗黙の了解である。 だから、書かなくていい といわれました。 この考え方にあまり納得いかないので、わかりやすく解説をしてください。

  • 数学的帰納法の問題です。

    数列{an}が、a1=1/2 a2=1/6 [an+a(n+1)+a(n+2)]/3=1/[n(n+3)] を満たしている。 (1)a3 ,a4を求めよ。 (2)anを推定し、それが正しいことを数学的帰納法を用いて証明せよ。 上のような問題に出くわし、困っています…。 (1)は、私の計算が正しければ、 a3=1/12 ,a4=1/20 となり、 一般項は、an=1/[n^2+n] と推定できると思うのです…が、どう証明をしていいのかが分かりません。 読みにくくて申し訳ないですが、どなたか詳しい方、回答お願いします。

  • 数学的帰納法

    先日模試があったのですが、自分の解答のどこが誤りなのか分かりません…。 nを正の整数とする。xとyの方程式 3x+4y=n…ア について、次の問に答えよ。 問 kを正の整数とする。n=3k+1のとき、方程式アを満たす0以上の整数x,yが存在することを示せ。 自分の解答↓ 1)n=4のとき ア⇔3x+4y=4 (x,y)=(0,1)はこれを満たすので、このときアを満たす0以上の整数x,yは存在する。 2)n=3k-2(k=2,3,4…)のとき、 アを満たす0以上の整数x,yは存在すると仮定する。 このとき、x=α、y=β(α、βは0以上の整数)とすると、 3α+4β=3k-2…イ が成立する。 このとき、n=3k+1のときでもアを満たす0以上の整数x,yは存在することを示す。 3x+4y=3k+1…ウとする。 ウ-イ 3(x-α)+4(y-β)=3であり、(x-α、y-β)=(1,0)はこれをみたすから、(x,y)=(1+α、β)はウをみたす。 よって、n=3k+1のときでも、アを満たす0以上の整数x,yは存在する。 以上のことから3でわると1余る4以上のすべての自然数nについて、アをみたす0以上の整数x,yは存在することが示された。 よって題意は示された。 と解答したのですが…。 実際解答したときは、かなり急いでいたので、2)→1)のように、 「n=3k-2で成り立つことを仮定」→「n=3k+1で成り立つ」→「n=4のとき成り立つ」というふうに順序が少し変になってしまいました。 採点欄のところには「仮定を用いてるので証明とはいえない」と書かれてしまったのですが、数学的帰納法を用いるなら、仮定を用いるのはふつうではないのでしょうか? 数学的帰納法だと伝わらなかったのでしょうか?? そもそも根本的におかしいのでしょうか?? どなたかお願いします。

  • 数学的帰納法でこの問題に詰まっています

    連続したk個の整数の積はk!で割り切れることを数学的帰納法で証明せよ。 という問題です。数学的帰納法というからには、nやn+1を使うのだと思うのですがよくわかりません。どなたか解法と解答をお願いします。

  • 数学的帰納法の第二段について

    数学的帰納法は第一段と第二段でわかれてるのですが第二段について質問です。 (Ⅱ) n=kのとき、命題P(n)が成り立つことを仮定すれば…。 この仮定すればって言うのは、第一段で、n=1は成り立つことから、1以外の数をn=kと表すことにして、これが成り立つかどうかはわからないけど、n=k+1が成り立つことを証明することは、n=1にkを足しただけ、逆を言えば、第一段で成り立ったn=1の時の等式にkを足したものだから、成り立ったものとn=k+1の等式を関係づけて証明するっことです? 要するに、仮定の使われ方がわかりません。自分なりに考えてみたんですが、しっくりきません。どうかよろしくお願いします。