• ベストアンサー

面積の積分公式

いわゆるバームクーヘン型と呼ばれるものですが、 f(x)=2π∫(α→β)xf(x)dx という公式です。持っている参考書には「一般に関数f(x)の面積はこの公式で表される」とありますが、つまりこの公式はf(x)がどんな関数であっても使えるということなのでしょうか?また入試試験でこの公式を証明を用いずに使って減点されたりはしないのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • eatern27
  • ベストアンサー率55% (635/1135)
回答No.2

通常使う関数であれば、「どんな関数でも」と言っていいでしょう。 ("通常使う"と書いたのは、積分自体が定義できない関数もあるからです) これは証明しなくても、普通は減点されないでしょう。この程度の物の証明まで必要なら、解答用紙が足りなくなってしまうでしょうし。(もし書くとしても簡単な説明くらいで十分)

rockman9
質問者

お礼

ありがとうございます!

その他の回答 (1)

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

 そもそも左辺がf(x)ってのが大間違いですぜ。  右辺も「関数f(x)の面積」を計算する公式じゃないですから、面積を計算するのに使ったら0点間違いなしです。  なお、右辺を正しい意味で使う場合には、公式と呼ぶまでもないような自明な式なんだから、証明なしで使って良いでしょ。

rockman9
質問者

お礼

すみません!!あまりに誤植が多すぎました... 適当に頭に残ってた記憶でつらつらと書いてしまって... まったく論外の質問でした。 これは体積ですよね!そこで、もう一度お聞きしたいのですが、この公式はy軸回転の体積を求めるときに、素となる関数f(x)がどんなものでも使用できるのでしょうか?ということです。

関連するQ&A

  • 定積分の面積計算に関して。

    面積を求める問題で、 参考書には計算過程は何も書かずに ∫[0→1]x(x-1)(x-a)dx=(1/6)a-(1/12) というように書かれていました。 これは普通に求めるのではなく、 何か公式のようなものがあるのでしょうか? (「-a/6(β-α)^3 」公式は知っていますが・・・。)

  • 定積分について

    問題集で ∫2~-1(x^2-4x+2)dx + ∫2~-1(-x^2+2x-2)dx を求めよ という問題がありました。 問題集の答えではそのまま括弧の中身を足し合わせて式を簡単にしてからやっていたのですが、そんなやり方でもいいのでしょうか? 教科書に公式の形として載っていたので式を見た感じ良いとは思っていたのですが、定積分が関数の面積を表すことを考えるとグラフの形状とかを考慮して計算すべきでは・・? と思いはじめてきました。 教科書に載っている定積分の公式の証明も正直、ただの帰納法的な感じで証明になっておらずこんな操作で計算してしまって良いのか、ともやもやした状態です。 また、もう一つ気になることがあるのですが、 奇関数f(x)の定積分を求めるとき∫a~-a f(x) dx の値が0になるということについてです。 問題演習等でこれら関数の面積の総和を求めよ、のような問題ではグラフがx軸より下側にある状態では区間で場合分けして下に飛び出てる部分はマイナスをかけて計算しています。 この考えにのっとると奇関数の前述したような形の場合2∫a~0 f(x) dx が正しくなると思うのですが、実際はx軸より下に飛びだしている部分の面積をそのまま足して引いています。 この二つの考え方の違いは一体何なんでしょうか? 題意が求めているものが前者と後者で異なっているのでしょうか? ここの考え方がよく分からず、問題文が何を求めるべきなのかよく分からなくなってしまことがあります。 どちらの質問も初歩的な質問でとても恐縮なのですが自分で考えてみてもわかりません。 どなたかご指導のほどいただければ幸いです。

  • 積分の考え方

    高校数学IIの積分の学習を始めたばかりです。参考書に積分が面積を表す説明が載っていました。そこでは関数f(x)≧0とx軸との間の面積を使って説明がされていたのですが、f(x)≦0の場合そのまま∫f(x)dxで考えてはいけない理由が見えてきません。何故わざわざ関数をx軸に関して反転させなければならないのでしょうか?何か明確な(当たり前な?)理由があるのでしょうか?宜しくお願いします。

  • 定積分と面積・・

    「曲線C:x^3-x^2とCに接する異なる直線L,Mがある。CとLとで囲まれた部分の面積と、CとMとで囲まれた部分の面積とが等しいとき、LとMとは平行であることを示せ」という問題の解説で「f(x)=x^3-x^2とおくとf'(x)=3x^2-2xであるから曲線C上の点(α,α^3-α^2)における接線の方程式はy=(3α^2-2α)(x-α)+α^3-α^2 ∴y=(3α^2-2α)x-2α^3+α^2この右辺をg(x)とおくと、f(x)-g(x)=x^3-x^2-(3α^2-2α)x+2α^3-α^2=(x-α)^2(x+2α-1) β=1-2αとおくと f(x)-g(x)=(x-α)^2(x-β) でえあり、CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α)  α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)・・・・・」と続いていくのですが「CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α)  α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)」のところのいみがわかりません・・  教えてください!!

  • 定積分と図形の面積

    a≦x≦bの範囲でf(x)≦0のとき、y=f(x)のグラフとx軸および2直線x=a,x=bで囲まれた部分の面積(Sとする)は、 ∫[a→b]f(x)dx これを計算して出てきた数値にマイナスの符号をつけることによって出てきますよね。 (∫[a→b]{-f(x)}dx)という公式もあります) しかしよく分からない点があります。 これはつまり、「a≦x≦bの範囲でf(x)≦0のとき、y=f(x)のグラフとx軸および2直線x=a,x=bで囲まれた部分がある」という前提があれば、「∫[a→b]f(x)dxの計算結果は負になる」という結果を表しているとも言えますよね? 何故こう言えるのでしょうか? f(x)とそれを積分して得られたF(x)は別だと思いますし、こう言い切れる理由が分かりません。 細かい上にあまり重要ではないと思われる質問ですが、気になっています。 よろしくお願いします。

  • 定積分における符号付き面積

    前の質問に関連した質問です。 定積分の値が負になる時これを『符号付き面積』と呼ぶのでしょうか。 例えば∮(1→3)(-x^2)dx=-8となって負の値になります。 しかし教科書にa≦x≦bの範囲で、y=f(x)とx軸で挟まれる図形の面積はf(x)≦0の場合、y=f(x)はx軸の下側にあるので面積は∮の前にマイナスを付けてS=- ∮(a→b)f(x)dxと表されるとあります。 これを上のy=-x^2, (積分区間1~3)の例で試すと、S=-∮(1→3)(-x^2)dx=-(-8)=8となり正の値になります。 ここで混乱してしまったのですが、つまり定積分によって面積を求める場合は値は必ず正になりますが、普通に定積分する際には値が負の値をとる事もあり、これを『符号付き面積』とも呼ぶという事でしょうか。 一つ前の質問で挙げた、|∮(a→b)f(x)dx|≦∮(a→b)|f(x)|dxという不等式についてですが、左辺についてこのf(x)がプラスの区間とマイナスの区間を含む場合、この不等式においてはそれぞれの区間を普通に積分するという意味で、各区間の面積を求めて合計する訳ではないですよね。 もしそうなら、f(x)がマイナスの区間の面積も正の値で出てくるはずなので、両辺がイコールになると思うのですが。 自分の勘違いしている所もありそうですので、その場合ご指摘ください。

  • 積分

    曲線y=f(x)=x√(1-x^2)とx軸で囲まれた部分をy軸のまわりに一回転してできる回転体の体積Vをもとめよ。ただし0≦x≦1とする。 という問題ですが、私はバームクーヘン分割による積分を使って、V=2π∫[0,1]xf(x)dxとしましたが、この積分がうまくいきません。 x=sinθとおいたのはいいものの、xが0→1のときθは0→π/2をつかうのかπ→π/2をつかうのか・・・・ おもいきって0→π/2でといても答えのπ^2/8とはなりません・・・ よろしくお願いします。

  • 積分の問題。次の条件を満たす2次関数f(x)は?

    積分の問題。次の条件を満たす2次関数f(x)は? ∫(-1~1)f(x)dx=0、∫(0~2)f(x)dx=10、∫(-1~1)xf(x)dx=4/3 よろしくお願いします

  • 四角形の面積の公式の証明

    授業で下のような四角形の面積の公式を習ったのですが、 どうやって証明すればいいでしょうか? 「ある四角形ABCDの2本の対角線をACをX,BDをYとして、その2直線のなす角をθとすると 四角形ABCDの面積Sは S=1/2 ×X×Y×sinθ 」

  • 積分で表される関数がイメージできません><

    公式として、d/dx*∫(a~x){f(t)}dt=f(x) というものがありますが、これのイメージというか、この公式自体がぴんときません。この公式を使う問題は苦手です。原始関数などを使って証明も書いてあり、それを理解することも出来ますが。 個人的な公式を覚える方針として「丸暗記は大嫌いだが、導きにくいものは導き方を1度確認したうえで丸暗記する。本当にすぐ導けるもののみ暗記しない。」という感じです。三角関数で言えば、2倍角の公式などは丸暗記していますが、和積・積和は導くという感じです。 上の公式も具体的に面積などを求めるものではないので、「積分したものを微分すれば元に戻る」ということを大まかにイメージして丸暗記してよいのでしょうか。 P.S. ちなみに混乱している原因はxとtという二つの文字が入っているからだと思います。