• 締切済み

確率解析等 3

解法がわかりません f:[0,1]→Rを[0,1]上連続関数とする。また、Xi(i=1,...,n)を独立でB(1,p)に従う確率変数、つまり、P(Xi=1)=p、P(Xi=0)=1-p (0≦p≦1)とし、Sn=(X1+···+Xn)/nとおく。このとき、次の問いに答えよ。 (1) 確率変数f(Sn)の期待値は多項式P_n(x)を用いてE[f(Sn)]=P_n(p)と表される。多項式P_n(x)をnとfを用いて表せ。必要ならばX1+···+XnはB(n,p)に従う確率変数であることを用いよ。 (2) 任意のε>0に対して、P(|Sn-p|≧ε)≦1/(nε^2)となることを示せ。 (3) fは有界閉集合[0,1]上の連続関数だから有界である。そこで、 sup_{x,y∈[0,1]} |f(y)-f(x)|≦M<+∞ δ(c) =sup_{|x-y|≦c} |f(y)-f(x)| とおく。このとき、任意のc>0に対して、次の不等式を満たすことを示せ。 |E[f(Sn)]-f(p)|(=|E[f(Sn)]-f(p)|≦E|f(Sn)-f(p)|)≦δ(c)+M/(nc^2) (4) fは[0,1]上の一様連続関数だから、lim_{c→0} δ(c)=0となる。この事実を用いて、 lim_{n→∞} sup_{x∈[0,1]} |P_n(x)-f(x)|=0 を示せ。

みんなの回答

noname#227064
noname#227064
回答No.1

(1) B(n,p)の確率関数はわかりますか? この回答では具体的には書かず、 P(nSn = k) = g(k;n,p) とします。 E[f(Sn)] = E[f(nSn/n)] = Σ_{k=0}^n f(k/n)g(k;n,p) だから P_n(x) = Σ_{k=0}^n f(k/n)g(k;n,x) となります。 あとは、g(k;x)をn,k,xで具体的に表せば良いだけです。 (2) P(|Sn-p|≧ε)にチェビシェフの不等式を適用すると P(|Sn-p|≧ε) ≦ p(1-p)/(nε)^2 これ以上は書かなくても良いですよね? (3) (1)と同様にnSnの確率関数をgとします。 E|f(Sn)-f(p)|)= Σ_{k=0}^n |f(k/n)-f(p)|g(k) = Σ_{|k/n-p|≦c} |f(k/n)-f(p)|g(k) + Σ_{|k/n-p|>c} |f(k/n)-f(p)|g(k) ≦ Σ_{|k/n-p|≦c} δ(c)g(k) + Σ_{|k/n-p|>c} Mg(k) ≦ Σ_{|k/n-p|≦c} δ(c)g(k) + Σ_{|k/n-p|≧c} Mg(k) ≦ δ(c) + M/(nc^2) 一つ目の不等式は sup_{x,y∈[0,1]} |f(y)-f(x)|≦M<+∞ δ(c) =sup_{|x-y|≦c} |f(y)-f(x)| から sup_{k/n,p∈[0,1]} |f(k/n)-f(p)|≦M<+∞ δ(c) =sup_{|k/n-p|≦c} |f(k/n)-f(p)| を使い、三つ目の不等式にはチェビシェフの不等式を使った。 (4) (3)の結果を使えば、 lim_{n→∞} sup_{x∈[0,1]} |P_n(x)-f(x)| ≦ lim_{n→∞} sup_{x∈[0,1]} E|f(Sn)-f(x)| ≦ lim_{n→∞} sup_{x∈[0,1]} δ(c)+M/(nc^2) = lim_{n→∞} δ(c)+M/(nc^2) = δ(c) c→0の極限をとって、 lim_{n→∞} sup_{x∈[0,1]} |P_n(x)-f(x)| ≦ 0 また、 lim_{n→∞} sup_{x∈[0,1]} |P_n(x)-f(x)| ≧ 0 でもあるので lim_{n→∞} sup_{x∈[0,1]} |P_n(x)-f(x)| = 0 となります。

関連するQ&A

  • 大学の統計学です 確率母関数、ベルヌーイ分布、モーメント母関数

    明日試験なのですが、勉強不足で全然わかりません・・・・ ・2項分布B(n,p)の確率母関数を計算せよ ・幾何分布Ge(p)の確率母関数を計算せよ ・X1,X2....Xnを互いに独立でベルヌーイ分布に従うn個の確率変数とするとき、Sn=X1+X2+...+Xnの分布が2項分布となることを示せ またSn/nの平均値と分散を求めよ ・指数分布Exp(θ)のモーメント母関数、平均値(期待値)、分散を計算せよ ・2回のサイコロ投げにおいて、Xを最初の目、Yを2回目の目とするとき、Z=X+Y,W=X-Yとおく (1)ZとWの平均値を求めよ(2)ZとWの分散をもとめよ(c)ZとWの共分散を 求めよ ・X1,X2....Xnを互いに独立で同一の分布に従う確率変数とする。 E(Xi)=μ、V(Xi)=σ^2、i=1,....,nとしX1,X2....Xnの標本平均をZ=1/n(X1,X2....Xn)とおく。 E(Z)とV(Z)を計算せよ わかる方教えていただけたら嬉しいです!!!! よろしくお願いします。

  • 確率の質問

    自分で考えた確率の問題なのですが、 解けずに困っています 「問題」 同じ連続確率分布f(x)に従う確率変数X1,X2,X3 がある。 確率変数Yを Y=Xi ( X1<X2<X3→Xi=X2, X3<X1<X2→Xi=X1, ... 真ん中の値をXiとする) とおくとき 確率変数Yの従う確率分布の平均と分散を求めなさい

  • 確率基礎教えてください!(4)

    確率基礎教えてください!(4) 確率変数Xが標準正規分布N(0,1)に従うとき、次の確率変数のp.d.f.を求めよ。 (1)Y1=X2乗 (2)Y2=log|X| (3)Y3=e -2x乗

  • ベルヌーイ分布における独立な確率変数とは?

    統計学の問題についてです。 【問題】 次式の確率関数f(x)をもつベルヌーイ分布に従う、 互いに独立なn個の確率変数Xi(i=1,2,…,n)がある。 以下の問に答えよ。   f(x)={p(x=1),1-p(x=0)}ただし0≦p≦1 確率変数Xiの期待値と分散を求めよ。 問題を解こうとしたのですが、確率変数Xiがよくわかっていません。 ベルヌーイ分布はB(1,p)で、取りうる確率変数は0か1の2つであるのに 「互いに独立なn個の確率変数Xi(i=1,2,…,n)」について考えるというのは どういう意味なのでしょうか? 概念的なものが全然理解できていませんので、その辺りも踏まえて 回答をしていただけたらと思っています。よろしくお願いいたします。

  • 確率変数の和の平均値と分散と確率分布

    確率の問題でどうしても解けない物があります。どなたか解き方を教えて貰えませんでしょうか。お願いします。 問題) 確率変数 Xi(i=1,2,…,N) は互いに独立であるが, それぞれ平均値i (E(Xi)=i) のポアソン分布に従う. この確率変数の和 Y= (N Σ i=1) Xi の平均値と分散を, Nの関数として求めよ. さらに,Yの確率分布 P(Y=n) を求めよ.

  • 確率の問題です!

    X1,X2は独立な確率変数で、P(Xi=k)=(1-pi)pi^k-1 (i=1,2 k=1,2,…) (1)E(X1) (2)E(X1X2) (3)P(X1 < X2) (1)はΣk(1-p1)p1^k-1を計算して1/(1-p1) (2)は1/{(1-p1)(1-p2)}となるのは分かったのですが(3)が分かりません。教えてください。 あと、確率変数XとYは互いに独立で、それぞれパラメーターλ,ν(0<λ,ν<1)の幾何分布に従うとする。Z=min{X,Y}とおくときP(Z=N)(n=1,2,…)を求めよ。 この問題はさっぱり言ってる意味が分かりません。分かる方是非教えてください。

  • 確率変数について

    X_0, X_1, X_2, ... を確率空間(Ω,A,P)上(Aは完全加法族)で定義された確率変数列とする。gを(R,B)→(R,B)"Rは実数,Bはボレル集合族のこと"が連続関数であるとする。  このとき,X_nがX_0に確率収束するならば,g(X_n)はg(X_0)に確率収束することを示せ。 という問題が分かりません。 具体的には、 gが有界のとき,一様連続性より確率収束が導けるのですが,gが有界でない時,確率変数X=X(ω)がωにも依存するため(ここで、任意の実数x∈Rに対して, {ω|X(ω)≦x}を満たすとき、Xを確率変数と言っている)、どうすれば確率収束が導けるのかが分かりません。ヒントだけでももらえると助かります。

  • 確率変数変換

    X1,X2,・・・,Xnが互いに独立な連続型確率変数であるとし、 Fi、i=1,・・・,nをXiの分布関数とすると、T=-2ΣlogFi(Xi) (Σはi=1からnまでです) これが自由度2nのカイ二乗分布に従うことを示せ。 色々試してみたのですが計算がぐちゃぐちゃになってしまい困っています。ヒントだけでもいいのでよろしくお願いします。

  • 関数解析と確率論の問題です。

    関数解析と確率論の問題です。 (Ω,F,P):確率空間 X_1、X_2:実数値確率変数 φ∈C^∞_0(R^2)(コンパクトな台をもつ∞回連続的微分可能な連続関数全体) とすると E[|φ(X_1、X_2)|^2]<∞ を示せ。 ご回答お願いいたします。 関数解析を履修したことがありませんので、自力で解くことができませんでした。よろしくお願いします。

  • 連続型確率変数

    離散型確率変数Xの密度関数をf(x)とすると、あるxでf(x)の値は、その点での確率となりますが、Xが連続型確率変数の場合f(x)の値は何を示すのでしょうか? 連続型確率変数のf(x)の一点の値は0になるので、確率ではないですよね?でも、例えば、最尤推定量の考え方は、母集団からランダムサンプリングされたあるn個の標本の実現値x1,x2,・・・xnが得られる確率を最大にする母数を求めるというものですよね? そうすると、母集団が連続型の場合は不具合が生じないでしょうか? 回答宜しくお願いしますm(_ _)m