• ベストアンサー

変数変換を使う2重積分の問題を教えてください。

この問題で困っています。 問 次の2重積分を指定された変数変換を使って計算しなさい ∬D e^((x-y)/(x+y)) dxdy、 D={(x,y):1≦x+y≦2、x≧0、y≧0} x=u(1-v)、y=uv という問題です。 お願いします

質問者が選んだベストアンサー

  • ベストアンサー
  • info222_
  • ベストアンサー率61% (1053/1707)
回答No.1

ヤコビアン|J|=|(∂x/∂u)(∂y/∂v)-(∂x/∂v)(∂y/∂u)| =|(1-v)u-uv|=u|(1-2v)| dxdy=|J|dudv=u|(1-2v)|dudv x-y=u(1-2v), x+y=u I=∬[D] e^((x-y)/(x+y)) dxdy =∬[E] e^(1-2v) u|(1-2v)|dudv,E={(u,v):1≦u≦2,0≦v≦1} =∫[1,2] udu*∫[0,1] |(1-2v)|e^(1-2v)dv ={(4-1)/2}  *{∫[0,1/2] (1-2v)e^(1-2v)dv+∫[1/2,1](2v-1)e^(1-2v)dv} 1-2v=tとおくと -2dv=dt =(3/2){∫[1,0] te^t dt/(-2)+∫[0,-1] -te^t dt/(-2)} =(3/4){∫[0,1] te^t dt-∫[-1,0] te^t dt} =(3/4){[(t-1)e^t][0,1]-[(t-1)e^t][-1,0]} =(3/4){2-(2/e)} =(3/2)(e-1)/e

noname#246158
質問者

お礼

ありがとうございます

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • Ae610
  • ベストアンサー率25% (385/1500)
回答No.2

当方が計算すると・・ ∬D e^((x-y)/(x+y)) dxdy   D={(x,y):1≦x+y≦2、x≧0、y≧0} = ∫[0,2]{e^(1-2v)}dv・∫[0,2]{u}du-∫[0,1]{e^(1-2v)}dv・∫[0,1]{u}du = e - 1/e^3 - (1/4)・(e - 1/e) = (3/4)・e + 1/4e - 1/e^3 ・・・となった。 x=u(1-v)、y=uvのヤコビアン  |∂(x,y)/∂(u,v)| = u

noname#246158
質問者

お礼

たすかります

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 多変数の積分について

    こんにちは。 現在多変数の微積を勉強しているのですが、わからないことがあるので教えてください。 まず、一つ目は広義積分の収束についてです。 ∫D dxdy/(1+x^2+y^2)Dは全平面 という広義積分なのですが、私は極座標変換をした結果この積分は発散すると思うのですがどうでしょうか? もう一つは計算問題です。 ∫D (x+y)^4dxdy D:|x|+|y|≦1 なのですが、上手い変数変換がわからないのです。 とりあえず私はu=x+y,v=x-yと変換したところ答えが2/5とでたのですが、全く自信がありません。 恐れ入りますがご指摘をお願いします。

  • 重積分

    D = { (x, y); 1<= x+y <=2, x >=0, y>=0 } とする。二重積分 I = ∬(x^2+y^2)/(x+y)^2 dxdy について次の問いに答えよ。 (1) u = x-y, v = x+y とおく。x, y をu, vで表せ。 (2) 行列式  | δx/δu δx/δv | を求めよ。  | δy/δu δy/δv | (3) (1)の変換でDに対応するuv平面の集合をD'とする。D'を図示せよ。 (4) I を求めよ。 (1)において x = (u+v)/2 y = (v-u)/2 というのも分かり,(2)においても 行列式 = 1/2がわかりました。 (3)において平面の集合D' としたとき 1<=v<=2, -v<=u<=v といのもわかりましたが(合っているかはわかりませんが)。どのように図示したらいいのでしょうか?

  • 積分の変数変換について

     積分の変数変換に関する質問です。一番簡単な直交座標から極座標への変換を例にします。   x = x(r,θ) = rcosθ.   y = y(r,θ) = rsinθ. であるとき f(x,y) = 1 を x^2 + y^2 ≦ R^2 という円内を積分領域して積分すれば   ∫∫f(x,y)dxdy = ∫∫dxdy = ∫∫rdrdθ ・・・・・・ (#) となり円の面積が求められます。つまり直交座標から極座標に変換して積分するときは   dxdy →drdθ ではなく、   dxdy →rdrdθ としなければならないと、どんな参考書にも書いてあります。つまり r を余分に付け加えるわけですが、これは   ┌ ┐ ┌       ┐┌  ┐   |dx|=|cosθ -rsinθ||dr |   |dy| |sinθ  rcosθ||dθ|   └ ┘ └       ┘└  ┘   |J| =|cosθ -rsinθ|= rcos^2θ- (-rsin^2θ) = r      |sinθ  rcosθ| のように行列式|J|でも求めることができ、|J|をヤコビアンと呼ぶということも参考書に載っています。  一方で   rdrdθ= rdθ*dr は極座標における面積要素ですから(#)の変換は直感的にも納得できます。θは角度ですから drdθでは面積になれないわけです。(#)は具体的には   ∫[0~2π]∫[0~R]rdrdθ で計算できます。この式だけじーっと見ていると、いつのまにか r とθが極座標の変数であることが忘れ(笑)、あたかもθを縦軸、r を横軸とする '直交座標' において関数 θ= r を積分していると見なせます。  で、ここからが質問なのですが・・・  直交座標から任意の座標に変数変換して積分するということは、結局のところ、その任意の座標を直交座標と見なして計算することであると考えてよいのでしょうか?  たとえば   x = x(u,v,w)   y = y(u,v,w)   z = z(u,v,w)   ┌  ┐  ┌        ┐┌ ┐   |dx| |∂x/∂u ∂x/∂v ∂x/∂w ||du|   |dy|=|∂y/∂u ∂y/∂v ∂x/∂w||dv|   |dz| |∂z/∂u ∂z/∂v ∂z/∂w||dw|   └ ┘  └         ┘└ ┘     |∂x/∂u ∂x/∂v ∂x/∂w|   |J| =|∂y/∂u ∂y/∂v ∂x/∂w|     |∂z/∂u ∂z/∂v ∂z/∂w| であるとき   dxdydz = |J|dudvdw という変数変換は、 u、v、w がどんな座標の変数であれ、最終的には u、v、w の '直交座標' で計算することであると考えてよいのかということです。  任意の座標同士の変数変換というのはどうなるのでしょうね。ちょっと想像しかねます。

  • 2重積分の変数変換の範囲についてです。

    2重積分の変数変換の範囲についてです。 ∬f(x,y)dxdy=∬f(φ(u,v),ψ(u,v))|J|dudv の式を用いて解く問題で、この式の使い方はわかるのですが、u,vの範囲の決め方がよくわかりません。 たとえば、 x=u(1+v),y=v(1+u) 0≦x≦2,0≦y≦x となっていたら、 0≦u(1+v)≦2,0≦v(1+u)≦u(1+v) を解けばいいんですよね? 答えでは、v≦u≦2/(1+v),0≦v≦1となっていました。 uの範囲は理解できますが、vの範囲(v≦1の部分が)がどうしてこうなるのかがわかりません。 同様にx=u+v,y=u-v 0≦x≦2,0≦y≦2-x で 0≦u≦1,-u≦v≦u のvの範囲(v≦uの部分が)がどうしてこうなるのかわかりません。 教えてください。

  • 2重積分の変数変換について

    2重積分について質問です。 ∬D (x^2+y^2)dxdy (D:(x/a)^2+(y/b)^2≦1) と与えられた場合に、極座標に変換して求めようと思うのですが、 x/a=rcosθ y/b=rsinθ という変換の仕方で求まるのでしょうか? また、初歩的な質問ですが、この積分で求まるのは楕円の面積なのでしょうか? 自分なりに解いてみたのですが、楕円の面積πabに一致しなかったので疑問に思いました。計算間違いでしょうか?それともそもそも2重積分の意味を勘違いしているのでしょうか? ご回答よろしくお願いします。

  • 広義二重積分の問題です。教えてください

    広義二重積分の問題です。教えてください、よろしくお願いします。 次の広義積分を求めよ。 問1、∫∫D 1/(1+x^2+y^2)^a/2 dxdy,D={(x,y):y≧0} 問2、∫∫D log(x^2+y^2) dxdy,D={(x,y):0<x^2+y^2≦1}

  • 重積分

    ∬{(x+y)exp(-(x+y))/2y+1}dxdy 0≦x≦∞、0≦y≦x という問題でx+y=u、2y+1=vとおいて変数変換しようとしたのですが積分範囲をどうして良いか分からなくて困ってます。 他にも解き方あったら参考に聞かせてください。

  • 変数変換と極座標変換を使う問題が分かりません

     変数変換と極座標変換を使う積分の問題をやっているのですが、  よくわかりません。  すいませんがどなたかお教えください。 よろしくお願いします。 (1).変数変換 x=2u ,y=3vを行い u、v に関する重積分で表せ。        (下式の様なDを用いた形でよい。) (2).(1)で表した (u,v) 上の領域に関する重積分を極座標変換し、    r,θに関する重積分に直し計算せよ。   π/2                π/2 (∫   sin^2θ dθ=π/4 ,∫   cos^2θ dθ=π/4 を用いてよい)    0                  0 計算する式 と 積分範囲(D)は画像で出します。 ほかにもいくつか出しているので、できればお願いします。

  • 2重積分

    ∬D log(x^2+y^2)dxdy,D={(x,y)|1≦x^2+y^2≦4}を積分しなさい…という問題です。極座標の変数変換を使うのはわかるのですが、どう計算すればいいかわからなくなってきました。 x=γcosθ,y=γsinθをxとyの範囲にそれぞれ代入しますよね。そこからどうすればいいのですか?

  • 重積分の変数変換問題

    重積分について勉強していたら ∬x^2dxdy D:{(x,y)|x^2/a^2+y^2/b^2≦1}を 適当な変数変換を用いて解け …という問題でつまってしまいました。 僕はx/a=u,y/b=vと変数変換して 与式=∬a^3bu^2dudv E:{(u,v)|u^2+v^2≦1} として重積分して   =∫[v:-1→1]dv∫[u:-√1-v^2→:√1-v^2]a^3bu^2du =a^3b∫[v:-1→1][u^3/3][u:-√1-v^2→:√1-v^2]dv =2a^3b/3∫[v:-1→1](1-v^2)^3/2dv と求めましたが、これ以降が行き詰ってしましました。 これ以降の計算方法がわかる方、またはまったく異なる計算方法をご存知の方は教えてください!

古代も現代の日本も嫌いです
このQ&Aのポイント
  • 古事記や万葉集を読んでも小さい国だと感じます。スケールが足らずつまらないと感じます。
  • 日本史もちょっと教科書を読んだだけでも当時は100点を取れまして学生時代は味気なく感じました。『こんなちっぽけな2500年ぐらいしかない国を覚えて何になるんだっ!』ときれてました。
  • 日本は女性が古代からとても優遇されており現代でも同じです。その点について個人的に嫌です。特に犯罪やデートに置いての男女格差。
回答を見る