• 締切済み

等長写像と測地線の関係について(リーマン幾何学)

M、Nをリーマン多様体、f:M→Nを局所等長写像とするとき、fはMの測地線をNの同じ速さの測地線に移すと本に書いてあったのですが、どうして同じ速さの測地線に移すと言えるのでしょうか。本にはさらっと書いてあるだけだったので、理由が知りたいです。 もし証明があれば、それも一緒に教えていただけたら有難いです。 よろしくお願いします。

みんなの回答

  • stomachman
  • ベストアンサー率57% (1014/1775)
回答No.1

 その本よりこってりしてるかどうかは保証しませんが:  Mの点A, Bを両端とする勝手な経路Cを考えます。すると、f(C)はf(A), f(B)を両端とするN上の経路になり、f(C)の道のりは(道のりを出すには局所の計量を経路にそって積分するわけで、そしてfが局所等長なのだから)Cの道のりと同じ。  で、A, Bを両端とする経路Sが測地線であるということは、SはA, Bを両端とするあらゆる経路Cの中で道のりが最短であるってことですから、f(S)はf(A), f(B)を両端とするあらゆる経路f(C)の中で道のりが最短である。だからf(S)は測地線。

関連するQ&A

  • 微分同相写像の列

    Mをコンパクト微分可能多様体とします。 {f[n]}をMの微分同相写像の写像列とします。 f[n]がn→∞の極限で、滑らかな写像fに一様収束しているとき、fは微分同相写像ということはできますか。 ここで一様収束とは、Mのリーマン計量から距離dを定義して、任意のε>0に対して、ある自然数Nが存在し、任意のx∈Mに対して、n>N⇒d(f[n](x)、f(x))<ε、が成り立つことを言います。

  • 多様体間の写像が滑らかであることについて

    f:R→R を  f(x)=x^(1/3) (xの3乗根) と定めます.このとき f は同相写像だが滑らかではないということを, 多様体間の写像が滑らかであることの定義に従って示したいのですが, それがよく分からないので教えてください. f は全単射かつ連続で,f^(-1)も連続であることは言えたので,f が同相写像であることは示せました. 問題は f が滑らかではないということです. Rを多様体としてみて,この多様体間の写像 f:R→R が滑らかであるとは, ------------------------------- 任意の x∈R と,x∈U, f(x)∈V かつ f(U)⊂Vとなる局所座標(U,φ),(V,ψ)に対して, f の U と V による局所座標表示 ψ・f・φ^(-1) が滑らか. ------------------------------- 今回は滑らかではないことなので,この否定を示せばよいのですよね? つまり,x∈U, f(x)∈V かつ f(U)⊂V なるどんな局所座標(U,φ),(V,ψ)をとっても, 局所座標表示 ψ・f・φ^(-1) が滑らかにならないような x∈R が存在することを示す. これを示そうと思ったのですが,出来ませんでした. f は 0∈R で微分可能でないので,0が問題の点だとは思うのですが…. ご教授お願いいたします.

  • 写像について

    f:M→N、M⊃A、N⊃Bならば (1)f -1(f(A))⊃A (2)f(f -1(B))=B∩Imf となる意味が分かりません。 逆写像とはf:M→Nが全単射のときに定義されるのに、(1)はfが単射ならば包含関係は=になるとあります。では⊃となるのはなぜでしょうか? また(2)の場合、右辺のようになるのはなぜでしょうか? ただしf -1は逆写像です。お願いします

  • 写像の問題です。よろしくお願いします。

    (1)2つの写像f:X→Y、g:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 写像の証明問題です。よろしくお願いします。

    写像の問題です。よろしくお願いします。 (1)2つの写像f:X→Y、f:Y→Zがある。g・fが全射ならばgは全射であるとする。ここでさらにgが単射であると仮定すればfも全射となることを証明せよ。 (2)自然数Nと零を合わせた集合N∪{0}から整数の集合Zへの写像で、全単射となるものを構成し、その理由を説明せよ。

  • 多様体の問題です。

    多様体の問題です。 X,Y:リーマン面 f:X→Y:正則写像(定値でない) P:Xの点 f(P)=Q とする。 fの座標表示が s = t^n (n∈N)となるP,Qでの局所座標表示 t: U_P → ΔP s: V_Q → ΔQ (ΔP,ΔQ:単位開円板) がある。 つまり、リーマン面からリーマン面への正則写像は 局所的には単位開円板の n重写像Δ→Δ: z→z^n と同じ形をしている。 特にfは開写像。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ これの証明を勉強していて、 分からないところがあって質問させてもらいました。 以下の(*)(**)(***)がその箇所です。 (*): 仮定のどの部分を使っているのでしょうか? (**): テイラー展開したのですが、 これはT^nの項でくくれといっているのでしょうか? (***): ここはさっぱり分かりません…。 「C内の半平面」というのは リーマン面Yの局所座標近傍C_zのことですか? この部分から前に進めなくて唸っているので、 どなたかよろしくお願いします。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 【証明】 P,Qでの局所座標T,Sをとる。 fはPの近傍で S=f_T(T), f_T(0)=0 と正則関数表示される。 仮定と正則写像の一致の定理より、 f_T(0)は恒等的に0ではないことが分かる。 (*) f_T(T)をテイラー級数展開し、 係数が零でない最初の項でくくる。 この操作により、SはTの関数として、 S=f_T(T)=T^n*U(T)、 U(0)≠0 (**) の形にかける。 『|T|が十分小さければ、 U(T)の値は全てU(0)を含み、0を含まない (***) C内の適当な半平面に含まれる。 従って、U(T)のn乗根の偏角を一価かつ連続に指定することができる。 こうして、U(T)^(1/n)の1つを正則かつ一価に定めることができる』

  • 逆写像の求め方(ちょっと応用)

    以下の逆写像を求めたいです。Rは実数です。 1.f(m)=log2(5m-4)の逆写像を求めよ。 定義域は4/5より大きい全ての実数で、値域は全ての実数です。 n=log2(5m-4), 2^n=5m-4, 5m=2^n+4, m=2^n/5+4/5。 したがって逆写像f^-1(m)=2^m/5+4/5。と解いてみましたが、あっているかどうかわかりません。答えになっていますでしょうか。 2.f(m)=m|m| 定義域と値域はどちらも全ての実数です。 この写像はmが正の数の場合は正の数を返し、負の数の場合は負を返すので、以下の二つに場合分けしました。 m>=0の場合はn=m^2と考え、m=√n、逆写像f^-1(m)=√m。 m<=0の場合はn=-(m^2)と考え、m^2=-n、m=√-n。逆写像f^-1(m)=√-n。。 自信が持てませんので、ご存知の方教えて下さい。負の数の平方根って、実数ではないですよね。。ということはやっぱりどこか間違ってます??

  • 線形写像

    V^nからV^m の線形写像で、 1)Ax=0 2)T(x)=Ax が成り立つように証明せよ。 という問題が出されたのですが、 どのように証明すれば良いのですか?

  • 写像の問題をお教え下さい。

    いくら考えても全くわかりません。 お教えいただければ大変嬉しいです。お願いします。 問題 Aをm×n行列とし、行列とベクトルの積で与えられる線形写像A:R^n →R^m:x ↦ Axを考える。 以下の問いに答えよ。 (1) 写像Aが単射であるならば、n ≤ mであることを示せ。 (2) n ≤ mであって、写像Aが単射でない例をあげよ。 (3) 写像Aが単射であるならば、rankA = nであることが必要十分であることを示せ。 (4) 写像Aが全射であるならば、n ≥ mであることを示せ。 (5) n ≥ mであって、写像Aが全射でない例をあげよ。 (6) 写像Aが全射であるならば、rankA = mであることが必要十分であることを示せ。 (7) もしn = mならば、写像Aが全単射であることとAが正則であることが必要十分であることを示せ。

  • 線形写像と線形変換

    線形写像と線形変換 以前、同様の題目で質問させて頂きました。 前回の質問内容:http://okwave.jp/qa/q5940429.html 線形写像と線形変換についての違いは理解出来たのですが、 分からない点があるので新規で質問させて頂きます。 線形写像の定義を表す場合、 R^n,R^mをR上のベクトル空間とする。 ベクトル空間R^n からベクトル空間R^m への写像f がR^nの任意の要素x,yに対して f(x+y)=f(x)+f(y),f(kx)=kf(x)を満たすとき、fを R^n からR^mへの線形写像という。 k∈Rである。 上の記述では何か間違っている点はありますでしょうか? n次元ベクトル空間はR^nとよく表記されているのを目にします。 Rは実数を表すイニシャルだと認識しています。しかし、kは複素数や虚数でも成り立つと 思うのでk∈Rと言う表現は正しくないのでは?と考えた次第です。 定数倍を表す場合は別の基礎体を考えなければならないと言う事でしょうか? 基礎体はRではなくKとして表記した方が正しいでしょうか? また、次元を表すnやmに関してはn,mは実数を前提として基礎体をRとしているので わざわざn,m∈Rと表記する必要は無いと考えているのですが、n,m∈Rも表記した方が 良いのでしょうか? 初歩的な質問で大変恐縮ですがご回答よろしくお願い致します。 初歩的な質問ですいません・・・よろしくお願い致します。