• ベストアンサー

拡張ディリクレ関数

f(x) = 1/m(xが有理数、x = n/m) = 0(xが無理数) ---------------------------- は有理数点で不連続、無理数点で連続である事を示したいのですが、 わかる方いらっしゃいましたら教えて下さい。

質問者が選んだベストアンサー

  • ベストアンサー
  • tmpname
  • ベストアンサー率67% (195/287)
回答No.1

有名な問題だけどね... 取り敢えず http://www.slis.tsukuba.ac.jp/~hiraga/kiso2/ulis/docs/cont.pdf とかあったので、読んで分からなかったらその点を質問して下さい(上のpdfでは[0,1]の間しか議論していないことに一応注意) 後、一応書いておくと「f(x) = 1/m(xが有理数、x = n/m)」というのは正確にはwell-definedではないです。

Trafalgar_law
質問者

お礼

ご協力ありがとうございます

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 連続関数

    関数の連続性を証明するところがわからないので質問します。 xが無理数ならば、f(x)=0とし、xが有理数で既約分数p/q(ただしq>0)のかたちに書けるときは、f(x)=1/qとする。 このように定義された関数fは無理数xで連続、有理数xで非連続である。その証明はやさしい。 xが無理数とし、εを任意の正数とする。1/q≧εすなわちq≦1/εとなる正整数qは有限個しかないから、δ>0を十分に小さく選ぶと開区間(x-δ,x+δ)には、上の条件を満たすqにたいする既約分数p/qは存在しない。したがって任意のy∈(x-δ,x+δ)に対して |f(y)-f(x)|=1/q<εとなる。fはxで連続である。一方、有理点のどんな近傍にも無理点が存在し、そこでfの値は0だから有理点では連続ではない。 自分は具体的な数としてx=√2、ε=0.4とすると、q≦2.5となり、q=1,2。 p/q=1/1,2/1,1/2,3/2などいろいろあげられますが、δ=0.01とすると(√2-0.01,√2+0.01)=(1.404・・・,1.424・・・)にはp/qはふくまれません。 ここからがわからないところなのですが、x±δは無理数に有理数を足したり引いたりした無理数であることがあるので、yが無理数になり、f(y)=0となり|f(y)-f(x)|=1/q<εが成立しないような場合があると思います。自分は本があっているなら、f(x)=0より、 f(y)=1/qになると予想しました。どなたか任意のy∈(x-δ,x+δ)に対して|f(y)-f(x)|=1/q<εとなる。を説明してください。お願いします。

  • 連続関数について

    y=f(x)なる実数全体で定義された実数値関数を考えます。このとき、 xが有理数の時、f(x)は無理数であり、 xが無理数の時、f(x)は有理数となるような連続関数y=f(x)は存在するのでしょうか。

  • 関数の連続について

    関数の連続について f(x)を、x=0のとき1、x∈Qでx=q/p(既約分数、p>0)のとき1/p、x∈Qでないとき0と定義する。 「f(x)は無理数で連続であることを示せ」という問題なのですが、 任意のε>0についてあるδ>0があり、無理数aについて|x-a|<δのとき|f(x)|<ε となればlim(x→a)f(x)=0と言え連続なのかと思いましたが、δをどんなに 小さくしても|x-a|<δの範囲には有理数xがあるので|f(x)|<εにならないように 思います。どこがおかしいのかご指摘願います。

  • 関数の証明なんですが

    この証明が全くわかりません。わかる方がいればぜひ教えていただければと思います。 問 関数 f : [0,1]→R(実数) は連続であり、有理数x∈[0,1] に対しては f(x)=0 とする。 このときあらゆるx∈[0,1]に対してf(x)=0 であることを証明せよ。 宜しくお願いします。

  • 解析学の連続関数?の問題でこまっています

    教えていただきたいのは、以下の問題です。 f[a,b]→Rが [a,b] 上連続で、f の取る値がすべて有理数ならば f は定数関数になることを示せ ヒント:中間値の定理 f[a,b]→Rが[a,b]上で連続とすると、fはf(a) とf(b)の中間の値をすべて取る 有理数の稠密性  任意の実数 x と任意のε>0に対しある有理数 q で|x-q|<εを満たすものが存在する よろしくおねがいします。

  • 連続関数の拡張

    一次元だとやさしすぎますが、 一般のR^dの閉集合F上での連続関数fが与えられたとき それをR^dの連続関数に拡張することはできますか? できるとすればどうすればよいでしょうか。 なお境界点xでfが連続とは 任意のε>0に対してxの近傍B_εが存在して、 y∈B_ε∩F ⇒ |f(x)-f(y)|<ε を満たすこととします。

  • 写像の連続性についての問題です。

    写像の連続性についての問題です。 次の写像が連続かどうか判断し理由も述べよ f:Q→R, f(x)=0(if x<2^1/2) 1(if x≧2^1/2) Q:有理数 R:実数 有理数から実数への写像です。問題なのはfの値が0から1になる境目が 2^1/2であるという事です。 わかるかたいましたらよろしくお願いいたします。<(_ _)>

  • 関数の問題?

    座標平面上でx座標とy座標がともに整数であるような点を格子点という。 直線y=ax+bが格子点を通るのは次のうちどの場合か番号で答えなさい。 ただし、a、bはともに定数でaは0ではない。 1 aは有理数でbは無理数 2 aは無理数でbは整数でない有理数 3 aは整数であに有理数でbは整数 4 aは無理数でbは整数 5 aは整数でbは整数でない有理数 なんとなく3かなと思うのですが、イマイチ理由も分かっていません。 ご教示いただけましたら助かります。

  • 関数の拡張について

    Ω⊂R^2を有界領域、∂Ωは滑らか、 f(x)をΩの閉包でヘルダー連続な関数とします。 このf(x)をR^2上で台が有界なものに拡張していきます。 ∂Ωが滑らかでΩが有界であることから、 ξ∈∂Ωにおける外向き単位法線ベクトルV(ξ)はξの滑らかな関数である。----(1) また∂Ωの近傍はx=ξ+sV(ξ)と表される。------(2) N(δ)={ξ+sV(ξ)∈R^2 | ξ∈∂Ω、-δ<s<δ}とする。 とくに外側の点は0<s<δに対応する。------(3) ただしδ>0は小さくとる。 また、χ(s)をR上の一変数の滑らかな関数で、χ(s)=1(s≦0),χ(s)=0(s≧δ)を満たすものとする。 そしてf*を次の通りに定める f*=f(x) (x∈Ω) χ(s)f(ξ) (x=ξ+sV(ξ),ξ∈∂Ω、0<s<δ) 0 (x∈R^2\(Ωの閉包∪N(δ))) とおく。 このときf(x)がΩの閉包でヘルダー連続ならばf*はR^2でヘルダー連続となる。----(4) このとき、(1)(2)(3)は何故このようになるのか理解できず困っております。 (4)については証明が見つけることができなかったので証明をお願いしたいと思っています。 どなたかお答えいただければ幸いです。

  • 関数の問題

    全ての実数で連続な関数f(x)が、xが有理数のときにf(x)=x^n(nは自然数)を満たすとき、 全ての実数でf(x)=x^nであることを以下のように証明したのですが、合ってますか? 間違っているか、もっと良い方法があれば教えて頂けると有り難いです。 証明) xを実数とするとき、任意のε>0に対して、|x-y|<ε⇔x-ε<y<x+ε…(1) を満たす有理数yが存在する。 x>0のとき、εを十分小さくとればx-ε>0とできて、(1)式の辺々をn乗すると、 (x-ε)^n<y^n=f(y)<(x+ε)^n ∴f(x)-(x+ε)^n<f(x)-f(y)<f(x)-(x-ε)^n f(x)は連続だから、ε→0のときf(x)-f(y)→0。すなわちf(x)=x^n x<0のとき、εを十分小さくとればx+ε<0とできて、(1)式の辺々をn乗すると、 (x+ε)^n<y^n=f(y)<(x-ε)^n (nが偶数のとき) (x-ε)^n<y^n=f(y)<(x+ε)^n (nが奇数のとき) いずれの場合もf(x)の連続性から、x>0のときと同様にf(x)=x^nとなる。 以上から任意の実数に対してf(x)=x^n。