• ベストアンサー

量子力学について

U(a)=exp[(2πi/h)P・a]のとき <x|U(a)=<x+a|となることを示せという問題がわかりません。(Pは運動量演算子 aはパラメータ hはプランク定数) ヒントにU(a)QU(a)^+ =Q+aというのがあり、これを使って両辺の固有値が等しくなることから示そうとしたのですが固有値が同じでも固有ベクトルは同じとは限らないよなと思い、いきずまってしまいました。 どなたか解説していただけないでしょうか。回答よろしくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
  • sa10no
  • ベストアンサー率68% (15/22)
回答No.1

固有値がxとなるベクトルを|x>と書いているだけです。xで一意的に指定できなくても問題ありません。

seturi38
質問者

お礼

ありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 量子力学

    波動関数Ψ(x)が Ψ(x)={π^(-1/4)d^(-1/2)}exp{ikx-(x^2/2d^2)} と表される。 d,kは正の定数、プランク定数hとする。 (1)位置xについて、期待値<x>と<x^2>を求めよ (2)運動量pについて、期待値<p>と<p^2>を求めよ (3)Δx=(<x^2>-<x>^2)^(1/2),Δp=(<p^2>-<p>^2)^(1/2)とするときΔxΔpを求めよ。 全くわかりません。詳しい解説お願いします。

  • 量子力学(自由粒子)の質問

    少し問題を解いていて詰まったところがあるので、どなたかお助けください。ちなみにこの手の計算に関してはまだ初心者です。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 自由粒子では、運動量pとエネルギーE=p^2/2m の交換関係が成り立っているので、運動量とエネルギーの同時固有状態 | α(t) > というものが存在することが分かります。 そこで、この固有関数(位置表示+運動量表示)をブラケットを使いながら求めていきたいのですが、時間発展演算子を使って | α(t) > = exp(-iHt/h) | α(0) > = exp(-iEt/h) | α(0) > のようにまずしておきます。すると、固有関数は、 ψ(x,t) = < x | α(t)> = exp(-iEt/h)< x | α(0) > = exp(-iEt/h) exp(iPx/h) となります。最後の < x | α(0) > は、左が位置の固有状態、右が運動量の固有状態なので、位置と運動量の変換行列になっているということを使いました。 ここで質問なのですが、 < x | α(t)> も左が位置の固有状態で右が運動量の固有状態であることは間違いないと思います。この場合は何故位置と運動量の交換行列が使えなくて、右の時間依存性を取ったもの | α(0) > では使えるのでしょうか? (使える使えないうより、単にそういう風に計算すると普通に求めた固有関数と合うだけですが) 一応運動量表示の時もあやしいながら書いておきます。 ψ~(p,t) = < p | α(t)> = exp(-iEt/h)< p | α(0) > = exp(-iEt/h)< p | α(0) > = exp((-iEt/h) δ(p - P) 注) ・変数と区別するために t=0 のときの 運動量を P と書きました ・規格化定数書くとごちゃごちゃするので省きました ・こうすると、普通に計算したときの固有関数と合うのですが、何か間違えているかもしれないので、考え方に間違いがあればご指摘ください。 別の方法があればそれも教えていただきたいです。

  • 量子力学の質問です

    量子力学の演習問題です。 「パウリ行列σx、σy、σzと定数Bx、By、Bzを用いてH=Bxσx+Byσy+Bzσz=B・σ(Bはベクトルです)を定義する。 この行列の固有値と規格化された固有ベクトルを求めよ。この問題に現れた行列Hは磁場中の非相対論的電子の運動を与えるハミルトニアンに対応する。」 という問題です。固有値は、|B|と思うのですが、固有ベクトルの求め方がわかりません。参考書を探してもなかったので、固有値もこれでいいのかわからないですし・・・ どうぞよろしくお願いします。

  • 量子力学について

    一次元の系を考え、-∞<x<∞にある電子の状態に対してポテンシャルのV(x)が、 V(x)={ +∞ (x≦0) , -V (0<x≦a) , 0 (a<x)} (V、a正の定数) であるとき、基底状態のエネルギー固有値と波動関数をもとめよ。(ただし、規格化定数は気にしなくてよく、-Vは十分深く、束縛状態は必ずできるものとする。) という問題で、エネルギー固有値を求めようとしたのですが、式が複雑でエネルギー固有値を求めら・れませんでした。どうにかして、基底状態のエネルギー固有値と波動関数だけを求める方法はないでしょうか? 回答よろしくお願いします。

  • 量子力学の問題です

    無限に広がる1次元空間を自由に運動する質量mの粒子を考える。 問 座標表示で考えるとき、運動量P'を微分演算子で表した式を記し、微分方程式                  P'Φ(x)=pΦ(x) を満たす、運動量固有値pに属する固有状態Φ(x)とする。系がこの運動量固有状態Φ(x)にあるとき 、座標の不確定性についいて説明せよ。 この問の前に座標と運動量の交換関係を求めたり、座標と運動量の間に成り立つ不確定性関係を記し、その意味を説明せよという問題がありそれは答えることができたのですが、上問をどのように解けばよいのか分かりません。どなたか回答もしくはヒントでもよろしいのでお願いします!!

  • 量子力学について質問です。

    量子力学について質問です。 基底を{|a'>}から{|b'>}へ変換するユニタリー演算子をUとします。 ただし、A|a'>=a'|a'>、A|a''>=a''|a''>などとします。 このときU=Σ[a']|b'><a'|となります。すなわちU|a'>=|b'>などとかけます。 このときUAU^(-1)=A'とかくとA'は{|b'>}を基底としたときの演算子Aの表示ということになりますよね? 一方、A|a'>=a'|a'>よりUAU^(-1)U|a'>=a'U|a'>となるので、これを [UAU^(-1)](U|a'>)=a'(U|a'>)と見ると 演算子UAU^(-1)は固有値a'、固有ベクトルU|a'>を持つということが言えますよね? さらに一方、B|b'>=b'|b'>なので比較するとBとUAU^(-1)が同時に対角化できることを表しています。 質問はここからなのですが、UAU^(-1)は物理的にはAと同じもの、すなわち同じものの別の基底での表示と解釈しているのですが、これがBと常に同時に対角化できるという結論に至ってしまいます。AとBが交換可能なときに同時に対角化できるはずなのですが、これはどういうことでしょうか?UAU^(-1)とBが同時に対角化できるのであってAとBが同時に対角化できるかどうかは別なのでしょうか?その場合、UAU^(-1)はAの別の表示という解釈では矛盾しているように感じるのですが。。。 これらの関係は何を意味しているのかを明示しながら説明してくださると助かります。

  • 量子?

    【問題】プランクの式  ρ(ν)=(8πν^2/c^3)*[cν/exp(cν/KBT)-1]ではなく レイリージーンズの式 p(ν)=(8πν^2/c^3)*KBT を用いた場合 ステファンボルツマンの式はどんな形になるか導出せよ。 (考えたこと) プランクの放射公式からの導出 黒体放射のプランクの放射公式(1)は、振動数νの関数として、 ρ(ν)=(8πν^2/c^3)*[cν/exp(cν/KBT)-1] c:光速度 h:プランク定数 k:ボルツマン定数 空洞内のエネルギー密度は、全振動数について積分することにより求められるから (途中省略) エネルギー密度と放射強度の関係式I=(c/4)*ρに代入し、 π,k,c,h-は、全て定数であるのでI=σT^4を得る。 プランクの放射公式からの導出はわかるのですが、 レイリージーンズの式 p(ν)=(8πν^2/c^3)*KBT を用いての(置き換えて)積分計算によりステファンボルツマンの式はどんな形になるかが 分かりません。お願いします。

  • 分かる限りで構わないのでお願いします。

    分かる限りで構わないのでお願いします。 ハミルトニアン H=(p^2/2m)+{(m・ω^2・x^2)/2} で記述される1次元調和振動子を考える。ここで、座標x^,運動量p^は正準交換関係[x^,p^]=ihを満たすエルミート演算子であるとする。 a^={√(mω/2h)}・{x^+(ip^/mω)}とおくと [a^,a^’]=1, H^=hω(N^+(1/2)), (N^=a^’a^), [N^,a^]=-a^, [N^,a^’]=a^’, が成立する。これらの公式を用いて以下の問に回答して下さい。 (a^,x^,p^はそれぞれの文字の上に^があるイメージで。a^’はa^の右上に+があるイメージで。) (1)任意の状態ベクトル |Ψ〉に対し、〈Ψ|Ψ〉≧0である事実を用いて、エルミート演算子N^の固有値が、非負の整数値となることを示して下さい。また、状態 |0〉を、 a^|0〉=0, 〈0|0〉=1 を満たすものと定義するとき、Nの固有値nの固有状態が |n〉:=N_n(a^’)^n|0〉と表されることを示して下さい。さらにエネルギー固有値も求めて下さい。 (2)(1)の固有状態 |n〉を 〈n|n〉=1と規格化するとき、規格化因子N_nを決定して下さい。 (3)公式〈x|x^|Ψ〉=x〈x|Ψ〉, 〈x|p^|Ψ〉=-ih・∂/∂x〈x|Ψ〉、などを用いて波動関数φ_n(x)≡〈x|n〉を求めて下さい。 (ヒント:exp(ε^2/2)・exp(-ε/2)=d/dε-εを利用) (4)規格化された固有状態|n〉に対する演算子x,pの行列要素 〈m|x^|n〉, 〈m|p^|n〉を計算して下さい。 (ヒント:まずa^,a^’の行列要素を求め、次にx^,p^がa^,a^’を用いてどのよに書けるか考える。)

  • 量子化した電界の交換可能性

     量子力学を独学で勉強しているのですが,8 時間ほど悩んで分かりません.教えて頂けないでしょうか?  生成演算子を a,消滅演算子を a†,波数ベクトルを k,プランク定数 h,誘電率 ε,モード体積 V,角周波数 ω_{k},位置ベクトル r とします.またモードの偏光と伝播方向を同時に表すベクトルを υ とします.  このときベクトルポテンシャルを表す演算子 A および,電場演算子 E は A = Σ_{k} (h / 4πεV ω_{k})^{1/2} υ × {a exp(-i ω_{k} t + ikr)} + a† exp (i ω_{k} t - ikr)} E = Σ_{k} i (h ω_{k} / 4πεV)^{1/2} υ × {a exp(-i ω_{k} t + ikr)} - a† exp (i ω_{k} t - ikr)} と表せます.また m, n をそれぞれ x,y,z のいずれかとして,υ のデカルト成分を υ_{m},υ_{n} とするとき, E_{m},A_{n}に対する交換関係 [E_{m} (r), A_{n} (r')] = (ih / 4 πεV) Σ_{k} ν_{m} ν_{n} {exp (ikr - ikr') + exp(-ikr + ikr')} と表されます.ここまでは理解できました.  さらに,任意のベクトル場を V (r) とし,そのフーリエ変換を V (r) = (1 / 8 π^{3}) ∫dk V(k) exp (ikr) またベクトル場の縦成分と横成分への分解を V (r) = V_{T} (r) + V_{L} (r) ∇・V_{T} (r) = 0 ∇×V_{L} (r) = 0 とします.このとき ∫dr' [E(r),A(r')・V(r')] = (ih / 2 πε) V_{T} を証明したいのですが,うまく証明できません.教えていただけないでしょうか.  自分なりに展開してみたところ ∫dr' [E(r),A(r')・V(r')] = ∫dr' (ih / 2 εV) V(r') {exp (ikr - ikr') + exp (-ikr + ikr')} かなとも思うのですが,この展開が正しいのか自信がないのと,正しいとして先に進めません.ご教授いただけないでしょうか.

  • 量子力学の問題

    量子力学の問題 次の問題に答えられません。 解等を教えていただけるとうれしいです。 --- ハミルトニアンが2行2列の行列(1)式で与えられている。 ただしωとθは定数である。以下の問いに答えよ。 (1)Hの固有値E+,E-と、それぞれの固有値に対応する規格化された固有ベクトルψ+、ψ-を求めよ。 (2)シュレティンガー方程式を満たす、時刻tにおける状態ベクトルψ(t)をE+、E-とψ+、ψ-を用いてあらわせ。さらに、初期状態を(2)式として、ψ(t)をωとθであらわせ。 (3)上記(2)の量子状態に対して時刻tにおいて測定を行い、(3)を得る確率を求めよ。 (4)このハミルトニアンは、磁気モーメントμを持つ1/2スピンの粒子が、磁束密度Bにおかれた場合の量子力学を記述する。θの幾何学的な意味を述べて、ハミルトニアン(1)のパラメータωをμとBで表せ。参考としてパウリ行列は(4)である。

このQ&Aのポイント
  • ブラザーDCP-J957Nで突然印刷できなくなった原因と対処法について解説します。印刷ができなくなった際には、JOBがプリンターに届いていない可能性があります。
  • Windowsを使用し、無線で接続している環境でお使いの場合、ネットワーク接続の問題が考えられます。接続状況を確認し、再接続してみることをおすすめします。
  • IP電話を使用している場合、電話回線の設定に問題があるかもしれません。IP電話の設定を確認し、必要に応じて修正してください。
回答を見る