Σ{n=0~∞} ((x^2^n)/(1-x^2^(n+1))を求めよ

このQ&Aのポイント
  • Σ{n=0~∞} ((x^2^n)/(1-x^2^(n+1))を求める問題について考えます。
  • この問題は、以下のように簡略化できます:(x^2^n)/(1-x^(2n+1))=(1/(1-x^2^n)-1/(1+x^2^n))/2。
  • ただし、間違いがある可能性もあるため、指摘していただくと助かります。
回答を見る
  • ベストアンサー

Σ{n=0~∞} ((x^2^n)/(1-x^(2

Σ{n=0~∞} ((x^2^n)/(1-x^2^(n+1)) ただし-1<x<1 を求めよという問題なのですが (x^2^n)/(1-x^(2n+1) =(1/(1-x^2^n)-1/(1+x^2^n))/2 とぶんかいできるので Σ{n=0~∞} (1/(1-x^2^n)-1/(1+x^2^n))/2 と置き換えられる 1/(1-x^2^n)=1/(1-x^2^(n-1)) + 1/(1+x^2^(n-1)) とも置き換えられるので Σ{n=0~∞} (1/(1-x^2^(n-1)) + 1/(1+x^2^(n-1)) -1/(1+x^2^n))/2 1/(1+x^2^(n-1)) -1/(1+x^2^n)はn=0~∞なので0 (ここが自信ないです) Σ{n=0~∞} (1/(1-x^2^(n-1)) は発散する ( 1/(1-x^2^(n-1)>1 なので) 間違えてるところがあったら指摘お願いします

質問者が選んだベストアンサー

  • ベストアンサー
noname#152705
noname#152705
回答No.2

(x^2^n)/(1-x^(2n+1))の分解と同じで 1/(1-x^2^n)=(1/(1-x^2^(n-1)) + 1/(1+x^2^(n-1)))/2になると思います。 あと、自信ないと書かれているように、番号だけずれているような和どうしの差がn→∞でゼロとは限らないです。 それぞれの和が収束しない場合は慎重な議論が必要です。 収束するとしても、相殺されないで残る項がないか見ないといけません。 まず極限をとらず有限和を計算してはどうですか。

nemuine8
質問者

お礼

>1/(1-x^2^n)=(1/(1-x^2^(n-1)) + 1/(1+x^2^(n-1)))/2になると思います。 そうですね 番号がずれている和同士の差が0になるのはお互い収束する場合でしょうか ちょっとちがうかもしれませんが、整数と自然数の数が同じというのをしってからいまいち無限?の概念がわからないんですよね  とりあえず有限和計算してみます

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

あ, そうか. 1/(1-x^2^n)=1/(1-x^2^(n-1)) + 1/(1+x^2^(n-1))

関連するQ&A

  • Σ[n=0..∞](-1)^n/nの収束はどうやってわかりますか?

    Σ[n=0..∞](-1)^n/nの収束・発散を吟味して収束ならその和を求めようとしていま す。 実際に判定してみましたら lim[n→∞]|a(n+1)/a(n)|=lim[n→∞]|((-1)^(n+1)/(n+1))/((-1)^n/n)|=lim[n→∞]|-n/(n +1)|=1で判定不能になってしまいました。 こういった場合はどうすればいいんでしょうか? 和についてですがとりあえず 収束という前提で収束値を求めてみましたら log(1+x)=Σ[n=1..∞] {(-1)^{n-1}/n}・x^n x=1代入で,log2 =Σ[n=1..∞] (-1)^(n-1)/nとなりましたがこれで正しいでしょうか?

  • lim(n→∞) Σ(k=1,n) n*(5/6)^n

    lim(n→∞) Σ(k=1,n) n*(5/6)^n この計算はどう解けばいいのでしょうか? Σの部分の計算ド忘れしてしまいました。 Σr^n=r(r^n-1)/(r-1) Σn=n(n+1)/2 は覚えてますが、確か中身が掛け算されてるのってΣとΣで分解できないですよね? つまり、Σf(x)*g(x)≠Σf(x)*Σg(x)ですよね? 計算に躓いてこまってます。よろしくお願いします。

  • 条件x[1]=1,x[n+1]=x[n]+・・・

    (1)条件x[1]=1,x[n+1]=x[n]+2^2(n=1,2,3,・・・)によって定められる数列{xn}の一般項はx[n]=□である。 (2)条件y[1]=4/3, 1/y[n+1]=4/y[n] + 3/4 (n=1,2,3,・・・)によって定められる数列{yn}の 一般項はy[n]=□である。 漸化式の問題です。 よろしくお願いします。

  • x^n+(1/x^n)をθで表す問題です。

    x+(1/x)=2cosθの時、x^n+(1/x^n)をθで表す問題です。 n=1の時、x+(1/x)=2cosθ n=2の時、x^2+(1/x^2)={x+(1/x)}^2-2=(2cosθ)^2-2=4(cosθ)^2-2 n=3の時、x^3+(1/x^3)={x+(1/x)}^3-3{x+(1/x)}=(2cosθ)^3-3*2cosθ=8(cosθ)^3-6cosθ n=4の時、x^4+(1/x^4)={x+(1/x)}^4-4{x+(1/x)}^2+2=(2cosθ)^4-4(2cosθ)^2+2=16(cosθ)^4-16(cosθ)^2+2 と考えてみると、x^n+(1/x^n)の第1項は2^n*(cosθ)^nと表せそうですが、その他の項をnで表すことができないでおります。 どのように考えていけばよろしいのでしょうか?アドバイスの程宜しくお願い致します。

  • Σ[n=0..∞](-1)^n5^n/(2n)!の和は?

    Σ[n=0..∞](-1)^n5^n/(2n)!の収束・発散を判定し,収束ならその和を求めよ。 という問題です。 これは交項級数なので数列{5^n/(2n)!}が単調減少且つlim[n→∞]5^n/(2n)!=0より (∵比を採ると5^(n+1)/(2(n+1))!/5^n/(2n)!=2/((2n+2)(2n+1))で単調減少且つ極限値が0) Σ[n=0..∞](-1)^n5^n/(2n)!は収束。 となるのかとと思いますが和はどのように求めればいいのかわかりません。 どのようにして求めれるのでしょうか?

  • Σ{n=0~∞} (x^n)((x-1)^2...

    Σ{n=0~∞} (x^n)((x-1)^2n) /n! …(1) ってどういう風に考えたら e^x(x-1)^2とおけるのでしょうか? テーラー展開の考え方を使うというのはわかるのですが e^x(x-1)^2ってテーラー展開したら Σ{n=0~∞} (x^n)((x-1)^2n) /n! なりますか? テーラー展開は最近知ったばかりでよくわかりませんが、 f(x)=f(a)+f'(a)x/1!+f''(a)(x^2)/2!+f'''(a)(x^3)/3!+... …(2) という式はしってます。 (証明とかはわかりませんが、基本的なsinxとかのテーラー展開はできます) よくわからないのが、(1)式だと、分母がn!のときに分子のxが3n乗になってしまうのがよくわかりません。(2)式のとおり行く分母がn!のときに分子のxがn乗以外にはならない気がするのですが。。。 それともこれはF(x(x-1))=e^x(x-1)^2としてΣ{n=0~∞} ((x(x-1)^2)^n) /n!と考えるのでしょうか?

  • x*(x+1) = n(n+1)の解

    x*(x+1) = n(n+1)の解 x=nもしくはx=-(n+1)が解となるそうですが、実際にはどう解くのでしょうか? 自分で考えたのは両辺の因子の対応付けをして 1) x=n, x+1=n+1 2) x=-n, x+1=-(n+1) 3) x=n+1, x+1=n 4) x=-(n+1), x+1=-n の4通りを考え、左と右の式が成り立つのは1.と4.の場合だけ、というのですが、 あまりすっきりとした解き方ではありません。 2次方程式の解の公式も使おうとしましたが、虚数が出てしまいうまく導出できませんでした。 もっと簡単な解き方についてご教授よろしくお願いいたします。

  • (1)1/(1-x-x^2)=Σ(n=0~∞)a_n(x^n)に対して

    (1)1/(1-x-x^2)=Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。 (2)(2-x)/(1-x-x^2)Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。 (3)(x^2)/(1-x-x^2-x^3)Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。 できるだけ、詳しく教えてください。お願いします。

  • Σ[n=1~∞]x/(1+x^2)^n

    Σ[n=1~∞]x/(1+x^2)^nが何になるのか求める方法教えてください

  • ∪{An:n∈N}を求めよ。

    ∪{An:n∈N}を求めよ。 問題の回答について、よろしくお願いします。 命題pnを”-nより小さい”、命題qnを"nより大きい"と定め、Rの部分集合An={x∈R:(pn∨qn)(x)が真である}とおくとき、つぎの問いに答えよ。 (1) ∪{An:n∈N}を求めよ。 (2) ∩{An:n∈N}を求めよ。 という問いについて考えてみました。 もしかしたら、全く的はずれな箇所もあるかと思い、テスト問題における解答の書き方として修正および補足を回答いただければと思います。 証明の仕方が自信ないです。 (1) A1={x∈R:(-1>x)∨(1<x)} An={x∈R:(-n>x)∨(n<x)} -1≦x≦1のとき、xはいずれのAnにも属さないことになる。 A1∪A2∪・・∪An=A1 ∪{An:n∈N}= A1 ={x∈R:(-1>x)∨(1<x)} (2) n∈Nを十分大きく取れば|x|<nとできる。 A1∩A2∩・・∩An=An lim an(n→∞)=∞ であるから, ∩{An:n∈N}= 空集合