線形変換の合成と証明についての質問

このQ&Aのポイント
  • 座標平面上の点を回転する線形変換についての質問です。
  • 線形変換の合成を証明する手順と、行列を用いた計算に困っています。
  • sin(φ+θ)とcos(φ+θ)の関係を利用して証明する方法が分かりません。
回答を見る
  • ベストアンサー

すみませんが、再び・・。

以前に下記の事を質問したのですが、パウリ行列などが出てきてよく分からないまま、回答が途絶えてしましました。もう少し質問できれば良かったのですが、時間が過ぎてしまったので・・。そこでもう一度質問をさせていただきました。 座標平面上の点を原点周りにθだけ回転する線形変換をfθで表しさらにそこからφだけ回転する線形変換をfφとしたときの事で まず、fθ○fφ=fθ+φを証明したいのです。 ここで、普通に考えれば確かにそうなることは分かるのですが、証明となるとどう手順を踏めばいいのでしょうか? あとfθ○fφを表す行列を行列の積を用いて求めていきたいです。これはまったく手が付けられず困っています。合成変換の場合はどうなるのか? 最後に上の行列がfθ+φを表す行列にひとしいことを利用して、証明したいのですがこれは上が分からないので・・・・。 sin(φ+θ)=sinφcosθ+cosφsinθ cos(φ+θ)=cosφcosθ+sinφsinθ この問題で、初めの問題は定義から考察してくれとあったのですが。それを含めておねがいします。

質問者が選んだベストアンサー

  • ベストアンサー
  • uranasu
  • ベストアンサー率66% (8/12)
回答No.1

平面上のθだけの回転は2元2次の行列で以下のように 表現できます。 (cosθ、-sinθ) (sinθ、 cosθ) 回転後の座標を(X) 、開店前の座標を(x) とすると        (Y)         (y) 以下の積で表現される。 (X) =(cosθ、-sinθ)(x) (Y)  (sinθ、 cosθ)(y) θだけ回転した後にφ回転すると (X)=(cosφ、-sinφ) ×(cosθ、-sinθ) (x) (Y) (sinφ, cosφ) (sinθ、 cosθ) (y) となる。 行列の積を計算すると (cosφ、-sinφ) ×(cosθ、-sinθ)  (sinφ, cosφ) (sinθ、 cosθ) =(cosφcosθ-sinφsinθ、-cosφsinθ-sinφcosθ) (sinφcosθ+cosφsinθ、-sinφsinθ+cosφcosθ) =(cos(φ+θ)、-sin(φ+θ))  (sin(φ+θ)、cos(φ+θ)) となる。 よってθだけ回転した後にφだけ回転したのと、 最初からφ+θだけ回転したの同じになる。 以上で証明は終わる。 なお、あなたが示したcosの加法定理は cos(φ+θ)=cosφcosθ+sinφsinθ ではなく cos(φ+θ)=cosφcosθ-sinφsinθ が正しいのである。

関連するQ&A

  • 証明方法について

    座標平面上の点を原点周りにθだけ回転する線形変換をfθで表しさらにそこからφだけ回転する線形変換をfφとしたときの事で まず、fθ○fφ=fθ+φを証明したいのです。 ここで、普通に考えれば確かにそうなることは分かるのですが、証明となるとどう手順を踏めばいいのでしょうか? あとfθ○fφを表す行列を行列の積を用いて求めていきたいです。これはまったく手が付けられず困っています。合成変換の場合はどうなるのか? 最後に上の行列がfθ+φを表す行列にひとしいことを利用して、証明したいのですがこれは上が分からないので・・・・。 sin(φ+θ)=sinφcosθ+cosφsinθ cos(φ+θ)=cosφcosθ+sinφsinθ 是非よろしくお願いします!

  • 線形変換の証明と問題

    どう証明していいか分からないので、教えてもらいたいです(>_<) (2)のやり方も、教えていただければ、助かります! (1)座標平面上の点を原点回りにθだけ回転する線形変換を考えることにより、 ( cosθ  -sinθ) ^n  =  ( cos nθ  -sin nθ)   sinθ   cosθ         sin nθ   cos nθ を証明せよ。 (2)行列 (cos π/4  -sin π/4  0)   sin π/4  cos π/4   0   0      0       1 で表される線形変換によって、次の図形 平面x+y+z=1はどのような 図形に移されるか? 回答を、ぜひ宜しくお願いします。

  • 数Cです。

    y=xtanθに関する対称移動の一次変換を表す行列を求める問題で,各成分をsin2θとcos2θで表せです。 なぜこの対称移動がx軸に関する対称移動fと原点のまわりの角2θの回転移動gとの合成変換g・fと考えられるのですか? 求める行列の答えは, (1,1)成分が cos2θ (1,2)成分が sin2θ (2,1)成分が sin2θ (2,2)成分が -cos2θ です。 お願いします。

  • 回転行列

    単位行列でないような3次回転行列Aには必ず回転軸があるのですか? つまり、dim{x∈R^3|Ax=x}=1となるのですか? 私の考えでは、3次回転行列Aはユニタリ行列で標準形 1  0   0 0 cosΘ sinΘ 0 -sinΘ cosΘ にできるということが、 線型変換A:R^3→R^3は長さと角度を保つような基底の変換でx軸を軸にするような変換にできる。 ということを表していると思ったので、dim{x∈R^3|Ax=x}=1なんじゃないのかなぁと思いました。 もし、dim{x∈R^3|Ax=x}=1になるのなら、その証明が知りたいです。 もしdim{x∈R^3|Ax=x}=1にならないのなら、反例となるようなAを教えて下さい。

  • 高校数学の行列の問題の別解がわかりません

    高校数学の行列なのですが、同じ問題で質問を出してますが、こちらは別解が分からなかった ので新しく出しました 問題は 行列(1/5,2/5,p,q)で表さられる平面上の1次変換fが原点を通るある直線l上への正射影となるように実数p,qの値を定め、直線lの方程式を求めよ で解説が直線lの方向ベクトルを↑e=(cosθ,sinθ)とすると,fはl上への正射影だから f;(cosθ、sinθ)→(cosθ,sinθ),(-sinθ,cosθ)→(0,0)となっていたのですが f;(cosθ、sinθ)→(cosθ,sinθ)は分かるのですが、(-sinθ,cosθ)→(0,0)がどういう事なのか 分かりません この後は解説に書いてある事は分かりました 後もうひとつの別解が↑x'=(↑x,↑e)↑e=↑e(↑e,↑x) これを行列を用いて表すと とあるのですが、この最初の式が何を表しているのかが分かりません (続き):(x',y')=(cosθ,sinθ)(cosθ,sinθ)(x,y)=(cos^2θ,cosθsinθ,sinθcosθ,sin^2θ)(x,y) (x',y')=からの式は(cosθ,sinθ)は縦書きでcosθが上,cosθが下です,(cosθ,sinθ)は横書きでcosθが左sinθが右です(x,y)は縦書きでxが上,yが下です,(cos^2θ,cosθsinθ,sinθcosθ,sin^2θ)は行列で左から左上、右上、左下、右下の順です この式も行列で表すと何故あの式になるのか分かりません 第三の別解がまだありまして、直線l上への正射影を考えるから直線l方向の固有値は1,lに垂直な方向の固有値は0とあるのですが、何故固有値が1や0になるのか分かりません 後は(注意)に平面上の点↑xをfで変換した点A↑xは直線l上の点であるからfは不動である よってA^2↑x=A↑xとあるのですが、これも何でこんな事が言えるのか良く分からないです たくさんありますが、どうかよろしくお願いします

  • 線形変換を教えてください!!

    線形変換を教えてください!! 『原点を通り、ベクトル(sinα,0,cosα)に直交する平面についての折り返しを表す行列を求めよ』という問題があります。 その答えは 『y軸のまわりの角度-αの回転、xy平面についての折り返し、y軸の周りの角度αの回転を続けて行えばよい』となっています。 しかし、問題も答えも、イメージできません。イメージできれば、基底ベクトルの回転から求めれば、計算は簡単だと思うのですが… 普通の人にはこれでイメージできるのでしょうか?それともこのような問題を解くとき、作図やイメージ以外の簡単な方法があるのでしょうか?教えてください。

  • 線形変換を教えてください!!

    線形変換を教えてください!! 『原点を通り、ベクトル(sinα,0,cosα)に直交する平面についての折り返しを表す行列を求めよ』という問題があります。 その答えは 『y軸のまわりの角度-αの回転、xy平面についての折り返し、y軸の周りの角度αの回転を続けて行えばよい』となっています。 しかし、自分なりに考えてみて 『y軸のまわりの角度αの回転(z軸をベクトル(sinα,0,cosα)に重ねるため)、xy平面についての折り返し、y軸の周りの角度αの回転(z軸をもとに戻すため)』と考えたほうがしっくりきます。当然答えは違ってくるのですが… 考え方に間違いがあるでしょうか?

  • 直行変換

    xyz座標軸を、z軸のまわりに角θだけ回転させる時、原点Oに関する任意の位置ベクトルⅹがf(ⅹ)に移されたとする。座標軸方向の基本ベクトルe1,e2,e3に関する直行変換fの表現行列を求めよ。 という問題で f(e1) = e1 cosθ + e2 sinθ f(e2) = -e1 sinθ + e2 cosθ f(e3) = e3 となるそうです z軸まわりの回転なので f(e3) = e3 となるのは理解できるのですが f(e1) = e1 cosθ + e2 sinθ と f(e2) = -e1 sinθ + e2 cosθ がよく理解できないません なんでこのようになるのか詳しく教えてください。お願いします。

  • 回転行列を使った加法定理の証明

    今日、予備校で行列を用いて三角関数の加法定理を証明しろという問題が出ました。証明の流れ的には(1)回転行列{{cosθ,sinθ},{-sinθ,cosθ}}を証明.→(2)合成変換を考えて証明.という流れなのですが、(1)で迂闊に内積などを使うと循環論法になってしまうのが難しいところだという事でした。自分は図形的に頑張って(1)をやろうと頑張っていたのですが、変域が実数全体に拡張されてしまうとお手上げという感じでした。だれか実数全体を変域として加法定理を用いずに回転行列を証明する方法をご存知無いでしょうか?よろしければ教えてください。

  • 回転行列の定義について

    回転行列の定義について 点P(x,y)を原点Oの周りに角θだけ回転させた点をP'(x',y')とすると (x')=(cosθ -sinθ)(x) (y')  (sinθ  cosθ)(y) ※上下2段で1つの行列と見てください と表せ,この (cosθ -sinθ) (sinθ   cosθ) を回転行列と呼ぶ。これは理解できるのですが          (x' y')=(x y)( cosθ sinθ)          (-sinθ cosθ) と考えることもできますよね。この (  cosθ sinθ) (-sinθ cosθ) を回転行列と呼ぶことはできないのでしょうか。 むしろ座標は横に並べて書く方が慣れているので、できればこちらで考えたいのですが…。 もしできるのであれば、実用的(試験等)にこちらの考え方を使うことはできるのでしょうか。 また、できないのであれば前者は○で後者が×となる理由があるのでしょうか。