• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:シュワルツの不等式の証明について)

シュワルツの不等式の証明の途中計算がわからない

このQ&Aのポイント
  • VをK上のベクトル空間とし、シュワルツの不等式を示すことを考える。
  • 証明の途中で、式変形による計算がわからない部分がある。
  • 具体的には、<a-<a,e>e , a-<a,e>e>の計算方法が不明。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

・問題の設定にやや疑問があります。 >VをK上のベクトル空間。 >||a||=√<a,a>、(∀a∈V)と定義。 ・この下の式が内積でノルムを定義しているとするなら Kを複素数 C または実数 R とする内積線形空間の議論と思われます ・正確には下の式の様に内積で定義された||a||がノルムになることを 示すためにシュワルツの不等式が必要だという議論かと思います。 ・この様な議論であれば、K=CかK=Rを明確にすべきです ・記載された式変形 >0≦||a-<a,e>e||^2 =<a-<a,e>e , a-<a,e>e>・・・(1) =<a,a> - <e,a><a,e> - <a,e><e,a> + <a,e><e,a><e,e>・・・(2) からK=Cであることが推測されますので K=Cとして説明します 説明:内積は次の性質を持ちます k,lを複素数x,y,z∊Vとして 1. <x,x>≧0, <x,x>=0⇔x=0 2. <x,y>=var(<y,x>) 3. <kx+ly,z>=k<x.z>+l<y,z> ここでvar(k)はkの共役複素数とします(lはエルです) 2.3.から次の性質が出ます 4. <z,kx+ly>=var(k)<z.x>+var(l)<z,y> <a,e>は複素数ですから<a,e>=kとおきます 当然、性質2.より var(k)=var(<a,e>)=<e,a> です 内積の計算は理解しているようなので これらの性質を使い貴方の計算をやり直します 0≦||a-ke||^2 =<a-ke , a-ke>・・・(1) =<a,a> - var(k)<a,e> - k<e,a> + k×var(k)<e,e>・・・(2)’ 私は(2)の様な式の記述が好ましいとは思いませんが k=<a,e>、var(k)=<e,a> と置き戻せばあなたの(2)の式になります

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

内積は双線型.

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 不等式の証明(ベクトル)

     空間の任意のベクトルa,bについて,||a||をベクトルaの大きさとすると,不等式: ||a-b||=>| ||a||-||b|| | が成り立つことを証明せよ。 という問題があったのですが,どのように証明すればよいのでしょうか。  ちなみに,まだ内積を定義していない状況です。内積を使わない方法を教えてください。

  • コーシーシュワルツの不等式

    文字は全て実数 √(a^2+b^2+c^2)*√(x^2+y^2+z^2)≧|ax+by+cz| を利用して 10(2a^2+3b^2+5c^2)≧(2a+3b+5c)^2 を証明せよ。という問題です。 調べてみると上記のシュワルツの不等式を利用するようなのですが うまい変形が思いつきませんでした。 ご教授お願いいたします。

  • ベクトルの等式の証明

    高校数学Bからの質問です。 『ABベクトル+BCベクトル-ACベクトル=0ベクトル、を証明しなさい』という問題です。 ごく初歩的な質問なのですが(ベクトル習いたてです)、解答解説の証明の過程に、ACベクトル+CAベクトル=AAベクトル=0ベクトル、とあったのですが、AAベクトル=0ベクトルという過程は踏んでおいたほうがよいのでしょうか? 僕はABベクトル+BCベクトルからACベクトルを導き、後は単純にACベクトル-ACベクトル=0と考えたのですが、何か問題はあるでしょうか? 宜しくお願いします。

  • 部分ベクトル空間であることの証明

    Vをベクトル空間、WをVの空でない部分集合とする。 集合Wが次の2条件(1)(2)を満たせば、Wはベクトル空間(加法とスカラー倍はVのと同じものを使う)になることを示せ。 (1)Wの任意の元a,bに対して、a+bもWの元となる (2)Kの任意の元k、Wの任意の元aに対して、kaはWの元となる この証明なのですが、以下のように示しました。 (∵) WがVの部分ベクトル空間であるには、 (1)Wが空集合でない (2)Wがベクトル空間の性質を全て満たす (3)Wが加法、スカラー倍について閉じている の3つである。 (1)は題意より明らか。 (2)は、Vがベクトル空間で、WはVの部分集合であることから、Wも当然ベクトル空間の性質を満たす。 したがって、残りの(3)のみを満たしていれば良い。 Q.E.D こんな感じでよろしいでしょうか? 稚拙な部分等ありましたらご指摘お願いします。

  • 等式(=)と非等式(≠)に関する四則演算

    等式(=)に関する四則演算は,加法に関して, ● 交換法則: a+b=b+a, ● 結合法則: (a+b)+c=a+(b+c), ● 簡約法則: a+c=b+c ⇔ a=b であり,乗法に関しては, ■ 交換法則:ab=ba, ■ 結合法則:(ab)c=a(bc), ■ 分配法則:a(b+c)=ab+ac, (a+b)c=ac+bc ■ 簡約法則:ac=bc ⇔ a=b ですが,それでは,非等式(≠)に関する四則演算は,加法に関して, ▲ 交換法則: a+b≠c+d ⇔ a+b≠d+c, b+a≠c+d ▲ 結合法則: (a+b)+c≠d+(e+f), ▲ 簡約法則: a+c≠b+c ⇔ a≠b 乗法に関しては, ▼ 交換法則:ab≠cd ⇔ ab≠dc, ba≠cd ▼ 結合法則:(ab)c≠d(ef), ▼ 分配法則:a(b+c)≠ad+ae, (a+b)c≠dc+ec ▼ 簡約法則:ac≠bc ⇔ a≠b のようになると考えられますが・・・??? 上記の▲と▼については,まだ証明していません. では,この非等式(≠)に対する「結合法則」,「交換法則」, 「分配法則」,「簡約法則」に関しての数学理論はありますか? 書物か雑誌記事をご存じの方,教えて下さい. なお,「非等式」なる用語は正式なものではありません.この場での造語です.

  • 不等式の証明について

    コーシー・シュワルツの不等式の特別な場合についての問題です。 (3)の代入後の式整理についてご教示いただければと思います。 解答によると、(3)で(2)の結果の不等式を使い、d=a+b+c/3とおいて代入したときの右辺が a^2+b^2+c^2/3 になるようなのですが、導かれるまでの過程がわかりません。 そのまま代入して計算しますと  a^2+b^2+c^2+(a+b+c/3)^2/4 =1/4(9a^2+9b^9c^2+a^+b^2+c^2+2(ab+bc+ca)/9) =1/4(10(a^2+b^2+c^2)+2(ab+bc+ca)/9) となって行き詰まってしまいます。 左辺は代入して整理しすぐ(a+b+c/3)^2と変形できたのですが右辺がわかりません。 ご教示よろしくお願いいたします。

  • シュワルツの不等式

    現在、「シュワルツの不等式」を勉強していますがわからない問題があります。これは大学受験用参考書に載っている問題です。どなたかおわかりになる方がいらっしゃれば教えていただきたいと思います。宜しくお願いいたします。 問題は f(x)、g(x)はともに区間a≦x≦bで定義された連続関数とする。このとき、tを任意の実数とし、∫(a→b){f(x)+tg(x)}^2dxを考えることにより、次の不等式を証明せよ。 {∫(a→b)f(x)g(x)dx}^2≦∫(a→b){f(x)}^2dx∫(a→b){g(x)}^2dx また、どのようなときに統合が成立するか述べよ。です。 全くわからなくて、解答をみたのですが、解答をみても納得いかないところがあります。 解答は、 任意のtについて、{f(x)+tg(x)}^2≧0から、∫(a→b){f(x)+tg(x)}^2dx≧0 t^2∫(a→b){g(x)}^2dx+2t{∫(a→b)f(x)g(x)dx}+∫(a→b){f(x)}^2dx≧0 ⅰ)∫(a→b){g(x)}^2dx=0のとき、a≦x≦bでつねにg(x)=0 ・・・ ⅱ) ∫(a→b){g(x)}^2dx>0のとき・・・ とあります。 ⅰのときのところで質問です。 ∫(a→b){g(x)}^2dx=0のとき、a≦x≦bでつねにg(x)=0とは必ずしもそういえますか? たとえば、g(x)がaとbの中間で点対称のグラフでも、 ∫(a→b){g(x)}^2dx=0 となると思います。必ずしもg(x)=0とは言えないと思いますが・・・。 解答を読んでもよくわかりません。 この解答の意図するところもよくわかりません。(途中までしか書いてませんが。) 私の勉強不足なのですが質問する人がいないため、困っています。どなたかご存知の方がいらっしゃれば、教えていただきたいと思います。また説明不足の点があれば補足させていただきますので宜しくお願いいたします。

  • 論理式の計算の証明

    論理式を計算するときの公式である分配法則の A+(B・C)=(A+B)(A+C) ↑計算式だけで証明できますか?? もし出来るのなら ↓ 例) A+(A・B)=Aの証明 A+(A・B)=A(1+B) 1+B=1なので A+(A・B)=A <終>  のような感じでお願いしますm(_ _)m

  • 分配法則の証明って?

    分配法則を証明できると聞きましたが どうやってやるんですか? 自然数に関する分配法則 a×(b+c)=a×b+a×c (b+c)×a=b×a+c×a 集合に関する分配法則 A∩(B∪C)=(A∩B)∪(A∩C) A∪(B∩C)=(A∪B)∩(A∪C)

  • 不等式の証明

    a>0、b>0の時(a+b)(1/a+1/b)≧4が成り立つ事を調べよ。 まず、左辺を展開して1+a/b+b/a+1。これを整理して、2+{(a^2+b^2)/ab} このような式変形でいいのでしょうか?ここから先はどのように証明していくのですか?相加・相乗平均を使うのかなとは思っています・・・簡単な事を質問しているかもしれませんが、教えて下さい。