• ベストアンサー

証明の問題です

amanitaの回答

  • amanita
  • ベストアンサー率41% (59/141)
回答No.1

a=3m+a' b=3n+b' c=3p+c' とおく(m,n,pは整数) a+b+c=3m+a'+3n+b'+3p+c' =3(m+n+p)+a'+b'+c' この式から (1) a'+b'+c'が3で割り切れるとき a'+b'+c'=3q(qは整数)と置ける a+b+c=3(m+n+p)+a'+b'+c' =3(m+n+p)+3q =3(m+n+p+q) m+n+p+qは整数だから、 a'+b'+c'が3で割り切れるとき、 a+b+cは3で割り切れる (2) a+b+c=3(m+n+p)+a'+b'+c'より a'+b'+c'=a+b+c-3(m+n+p) a+b+cが3で割り切れるとき、 a+b+c=3rと置ける(rは整数) a'+b'+c'=a+b+c-3(m+n+p) =3r-3(m+n+p) =3(r-m-n-p) r-m-n-pは整数だから、 a+b+cが3で割り切れるとき、 a'+b'+c'は3で割り切れる。

関連するQ&A

  • 背理法を用いた、整数問題の証明

    a,b,cは整数とし、a^2+b^2=c^2とする。a,bのうち、少なくとも1つは3の倍数であることを証明せよ。  という問題について質問します。 a,bはともに3の倍数でないと仮定する。 このとき、a=3n+1,b=3m+1(n,mは整数)とおく。 a^2=3(3n^2+2n)+1 b^2=3(3m^2+2m)+1 ただし、3n^2+2n,3m^2+2mは整数。 よってa^2,b^2を3で割った余りはともに1である。 ※ a^2+b^2=3(3n^2+2n)+1+3(3m^2+2m)+1 =3(3n^2+2n+3m^2+2m)+2 3n^2+2n+3m^2+2mは整数である。 したがって、a^2+b^2を3で割った余りは2である。 一方、cが3の倍数のとき、c^2は3で割り切れ、 cが3の倍数でないとき、c^2を3で割った余りは1である。 すなわちc^2を3で割った余りは0か1である。 ※ よって、a^2+b^2=c^2において、 左辺は3で割ったときの余りが2、右辺は3で割ったときの余りが0か1 であるから矛盾する。 ゆえに、背理法よりa^2+b^2=c^2ならば、a,bのうち、少なくとも1つは3の倍数である。 このように解答したのですが、※と※の間の部分に対して数学の先生から、不十分というコメントを書かれてしまいました。 どこが不十分なのか分かる方がいらっしゃいましたら、教えていただけないでしょうか。 よろしくお願いします!

  • 3の倍数であることの証明

    《問題》 a,b,cは整数とし,a^2+b^2=c^2とする。a,bのうち,少なくとも1つは3の倍数であることを証明せよ。 《解答》 a,bはともに3の倍数でないと仮定すると,【aとbは3k+1または3l+2(k,lは整数)と表される。】 ここで (3k+1)^2=3(3k^2+2k)+1 (3l+2)^2=3(3l^2+4l+1)+1 3k^2+2k,3l^2+4l+1は整数であるから,3の倍数でない数a,bの2乗を3で割った余りはともに1である。 したがって,a^2+b^2を3で割った余りは2である…(1) 一方,cが3の倍数のとき,c^2は3で割り切れ,cが3の倍数でないとき,c^2を3で割った余りは1である。 すなわち,c^2を3で割った余りは0か1である…(2) (1),(2)はa^2+b^2=c^2であることに矛盾する。 ゆえに,a^2+b^2=c^2ならば,a,bのうち,少なくとも1つは3の倍数である。 質問は,【 】の囲ったところです。 aとbは3k+1または3l+2(k,lは整数)と表されるとのことですが,3l+2のところを「3l+1」とし,aとbは3k+1または「3l+1」(k,lは整数)と表される,というようにすることはできないのでしょうか? 回答宜しくお願いします。

  • この証明問題を解いてください

    a,b,cは整数で,a^3+2b^3+4c^3=2abcを満たしています。 このときa=b=c=0であることにはどうやって証明すればいいのですか?

  • 数学の証明問題

    次の問題が解けません!! どなたかお願いします! 正の整数nに対して、曲面郡 (x/a)^n+(y/b)^n+(z/c)^n=3 は点(a,b,c)において互いに接することを証明せよ.ここでa,b,cは0でない定数である. お願いします.

  • おそらく整数問題。この問題のヒントを至急ください

    a,b,c,dは素数とする。整式 (ax+b)(-cx+d)-3 を x^2+x+1 で 割った余りが定数となるとき、その余りは整数の2乗であることを示せ。

  • 証明について

    a,bを整数とするとき次の2つの条件(i),(ii)について(i)と(ii)は同値であることを証明する問題です。 (i) a,bはお互いに素である。すなわち、aとbの最大公約数は1である。 (ii) ax(0)+by(0)=1となる2つの整数x(0),y(0)が存在する。 (i)の問題について 2つの整数aとbの最大公約数をGとおくと a=a'G,b=b'G(a',b'はお互いに素)とする。 (1)aをbで割ったときの商をq,余りをrとするとa=bq+r rについて解くと r=a-bq 2つの整数はaとbはa=a'G,b=b'G(a',b'とおけるので r=a'G-b'G この後どのように証明するのでしょうか? (ii) ax(0)+by(0)=1となる2つの整数x(0),y(0)が存在はどのように証明するのでしょうか?

  • 苦手な整数問題的な証明問題

    こんにちは 1浪生でございます。 この度は整数問題に関していくつか質問させていただきたく存じます。 質問1、3つの自然数a,b,cがa^2+b^2=c^2を満たしている。この時、a,b,cの少なくとも一つは3の倍数であることを証明せよ。 質問2、nは整数とする。n^3が偶数の時、nも偶数であることを証明せよ。 の2問でございます。 お時間の許す限り、宜しくお願い致します。

  • 証明

    a,bを整数とするとき次の2つの条件(i),(ii)について(i)と(ii)は同値であることを証明する問題です。 (i) a,bはお互いに素である。すなわち、aとbの最大公約数は1である。 (ii) ax(0)+by(0)=1となる2つの整数x(0),y(0)が存在する。 ★(i)⇒(ii)の証明について ○a, 2a, 3a, …, (b-1)aというb-1個のb-1が分かりません。どうしてb-1と考えるのでしょうか? また、b-1ではなくnと置いてもいいですか? ○(1≦k<l≦b-1)の範囲がどのように現れたのでしょうか? ○差la-ka=(l-k)aはbで割り切れると分かるのですか? ○、1≦k<l≦b-1から1≦l-k≦b-2がどうして現れるのか分かりません ○k-lはbで割り切れないのですか? またk-lはどこから現れたのですか? ○kaをbで割った余りが1であるような整数kが存在するのkaはどこから現れたのですか? ○ka-lb=1となるとax(0)+by(0)=1となる2つの整数x(0),y(0)が存在することが分かりません ○x(0)=k,y(0)=-lはどこから出たのですか? ★(ii)⇒(i)の証明 aとbが共通の素因子pをもつと仮定すると、ax+byはいつもpの倍数になるので、ax+by=1となることはない。 ことについてよく分かりません。 例えば数字を使った表現を利用することができるのでしょうか? 数字を使っても証明はできるでしょうか? 沢山質問をしてすいません。

  • 2次方程式の問題(証明)です。

    ≪問題≫f(x)=ax^2+bx+cにおいてcが奇数,aとbがともに整数で,a+bは偶数のとき,方程式f(x)=0は整数解をもたないことを示せ。 ≪自分の解答(途中)≫ a+bが偶数であることから, a,bともに偶数のときと, a,bともに奇数のときがある。 これから,解と係数の関係とかを使うのかという検討もしてみたのですが,全然わかりません^^; もしよければ教えてください^^ よろしくお願いします。

  • 数学の整数の問題で分からないことがあります。

    最大公約数が1である整数a,b,cはa^2+b^2=c^2を満たしている。 このとき、a,bのうち、一方が偶数であり、一方が奇数であることを 示せ。 まず2で割り切れるか割り切れないかということで、 a=2s+x,b=2t+y,c=2u+z(s,t,uは整数 x,y,z:0か1) とおいてa^2+b^2=c^2に代入してその結果が 2(2s^2+2sx+2t^2+2ty)+(x^2+y^2)=2(2u^2+2uz)+z^2・・・(1)となり、 この式から[x^2+y^2を2で割った余り]=[z^2を2で割った余り]となる。 解答ではここから更に(1)を 4(s^2+sx+t^2+ty)+(x^2+y^2)=4(u^2+uz)+z^2とし、 [x^2+y^2を4で割った余り]=[z^2を4で割った余り]として z=0の場合とz=1のときの場合分けで示しているのですが、 [x^2+y^2を2で割った余り]=[z^2を2で割った余り]の段階で z=0の場合とz=1のときの場合分けを使って考えてはいけないのは 何の不都合があるのでしょうか?