• 締切済み

階数と退化次数の命題(松坂さんの『線形代数入門』)

松坂さんの『線形代数入門』p104の定理3.19からの抜粋です。 V,Wをベクトル空間として、Vは有限次元であるとする。そのとき、線形写像F:V→Wの像をW'、核をV'とすれば、 dimW'+dimV'=dimV が成り立つというものがあります。 この証明の流れを軽くかくと、 dimV(=n)、dimV'(=s)の次数を決める。すると、V'はVの部分空間なのでdimV'の基底を拡張したものがdimVの基底になる。 その拡張した基底(r個追加して拡張したことにする)のFによる像がdimW'の基底となることを示す。 するとs+r=nとなり定理が証明できたことになる。 この証明の中で、拡張したもの像がW'を生成すること、1次独立であることを示したらそれが基底であることが言えるわけですが、1次独立であることをしめしている箇所がわかりません。 1次独立の定義は、一次結合が0になるのは、その実数係数がすべて0の時に限るということだったはずですが、この証明においては、実数係数がすべて0であるということは述べていますが、その時に限るということは言えていない気がします。 どなたかお答えいただけると幸いです。

みんなの回答

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

どんな証明なのか知らんけど, 気になったら 「一次独立でない」 と仮定していろいろ考えてみればいいのでは?

statistics_road
質問者

お礼

どうも、ちょっと考えてみました。質問の幅を小さくいてもう一回質問してみようとおもいます。

関連するQ&A

  • 線形代数

    和空間と合併集合というのは、どう違うのですか? つまり、複素線形空間Vに対する部分空間W_1とW_2を考えたとき、W_1+W_2 と W_1∪W_2 の違いは何なのでしょうか? 教科書に「和空間は合併集合から生成される部分空間にほかならない」という記述があるのですが、 (1)2つの部分空間の合併集合はまた、Vの部分空間になる (2)Vの部分集合V'がVの部分空間となっているとき、V'から生成される部分空間はV'にほかならない という(1)と(2)から、W_1+W_2とW_1∪W_2は同じものだという考えに至ってしまったのですが・・・。 (1)か(2)のどちらかが間違っているのか、或いは両方とも正しいが、穴があるのか、ご指摘下さい。 また、これに関連してですが、次元定理(で宜しいのでしょうか)と呼ばれる以下の公式 dimW_1 + dimW_2 = dim(W_1 + W_2) + dim(W_1∩W_2) において、dim(W_1 + W_2) を dim(W_1∪W_2) と置き換えても成り立つのでしょうか。 一応この定理の証明を見る限りでは、W_1∪W_2でもよさそうに思ったのですが、そのあたりで勘違いをしているかもしれません。

  • 松坂『線形代数入門』:表現行列の標準系

    本書のp205の命題6.10 V,Wをそれぞれn次元、m次元のベクトル空間とし、F:V→Wを線形写像とする。Fの階数がrならば、V、Wの基底α、βを適当に選んで、Fを次の形の行列で表現することができる [I_r O_r,n-r Om-r,r Om-r,n-r] I_rはr次の単位行列、Oはそれぞれ付記された添数の型の零行列を表す。 r次の単位行列を0で埋めてm*nにした行列です。 教科書の証明は KerFはn-r次元であるから、その基底を{v_r+1,...,v_n}とするとして、 それを拡張したVの基底を{v_1,...,v_r,v_r+1,...,v_n}とするそのとき F(v_1)=w_1, ..., F(v_r)=w_r とおけば、{w_1, ... , w_r}はImFの基底となる。 そこで{w_1, ... , w_r}を拡張したWの基底を{w_1, ... , w_r , w_r+1, ... ,w_n}とすれば F(v_r+1)=0 , ... ,F(v_n)=0 より表現行列は明らかに上で示した形になる。 なぜこれで示せているのかわからないです…

  • 線形代数の問題で困っています。

    U={F:V→W|Fは線形写像} とおき、 Vを3次元線形空間とし、{v1,v2,v3}を基底とする。 Wを2次元線形空間とし、{w1,w2}を基底とする。 このとき (1)Uは線形空間であることを示せ。 (2)Uの基底を一組求めよ。 (3){v1,v2,v3}、{w1,w2}を用いて同型写像を作ることにより、UとM(2,3)は同型になることを示せ。

  • 線形代数の問題の解き方がわかりません

    以下の問題が解けなくて困っています。 V、Wをベクトル空間、v1、v2、…vn をVの基底とし、w1、w2、…wmをWの基底とする。ここで、dimV=n、dimW=mとした。線形写像T:V→Wに対し、上記基底に対する表現行列をAとする。 (1)線形写像Tが一対一(単射)かつ上へ(全射)の写像であるとき、その逆写像Tインバースは線形写像となることを示せ。(このとき、TはVからWへの同型写像といわれる。) (2)Tが同型写像であるときの必要十分条件は、n=m かつ Aは正則行列となることを示せ。またTが同型写像であるとき、Tの逆写像の表現行列はAの逆行列であることを示せ。 解き方がわかる方は教えてください。(1)だけなど、途中まででも構いません。

  • 線型代数の次元に関する証明

    いま理系の大学1年の者です。 線型代数の初めのほうに出てくる定理なんですが、証明が載っていないし、証明のやり方も思いつきません。 証明の仕方を教えてください。 W1、W2がVの部分空間であるとき、 W1⊂W2、dimW1 = dimW2 ⇒ W1 = W2 よろしくお願いします。

  • 【線形代数】基底、dimVの求め方

      1 2 V=( 2 4 )とすると、   3 ,6 a1=( 1,2,3 )はVの基底だからdimV=1である。 という意味がよくわかりません。 単純にx、yの値があるからdimV=2ではないのですか? 基底の定理を見てもよくわかりません。 是非教えてください。 大変見にくくてすいません。

  • 線型代数 部分空間 次元 基底

    線型代数の問題です。 全然手がつけられないので助けてほしいです(^^;) 次のV=Mn,n(R)の部分空間の次元と基底を求めよ。 (1)W1={A=(aij)∈V|i>jのときaij=0}(上半三角行列の全体) (2)W2={A∈V|tA=A} (対称行列の全体) (3)W3={A∈V|tA=-A}(交代行列の全体) (4)W1∩W2,W1+W2 (5)W2∩W3,W2+W3 答えは (1){Eij|i<j}が基底 dimW1=1/2(n^2+n) (2){Eij+Eji|i≦j}が基底 dimW2=1/2(n^2+n) (3){Eij-Eji|i<j}が基底 dimW3=1/2(n^2-n) (4)(5)は書いてないので分からなかったです... お願いします!!

  • 線形代数

    Vを2次以下の実係数多項式全体のなすベクトル空間とする: V={a0+a1x+a2x^2|a0,a1,a2∈R} (1)1,x-1,(x-1)^2はVの基底であることを示せ。 (2)α,β,γ∈Rとし、T(1)=α,T(x-1)=β,T((x-1)~2)=γを満たすR-線形写像T:V→Rが与えられたとする。任意のf=a0+a1x+a2x^2∈VはFによってどのような実数に写される。T(f)を計算せよ。 という問題なのですが、どなたか解答をお願いいたします。

  • 線形代数で困っています。

    線形代数で困っています。 V:4次元線形空間 T:V→V:線形変換 s.t. 『dim(ImT)=3 、dim(ImT^2)=2、 dim(ImT^3)=1、dim(ImT^4)=1』 Tの指数は写像の合成の回数を表す。 【問題】 (1) KerT ⊂ ImF を証明せよ。 (2) ImT^2 = KerT+ImT^3 (ただし、+:直和)を証明せよ。 (3) TのJordan標準形を求めよ。 -------------------------------------------- (1)は以下のように示しました。 次元定理を使って、 dim(KerT)=n-dim(ImT)=4-3=1。 従って、dim(KerT) ⊂ dim(ImT) ←ここの議論はあっているでしょうか?? (2)はお手上げです。方針が見えません。 (3)はまず表現行列を求めるのは分かるのですが、 表現行列を求めるための基底がなんなのか分かりません。 ↑の次元の数(3,2,1,1)を行列にしても仕方がないですし。。 (1)が合っているかと、 (2)(3)に対してアドバイスをお願いしたいです。 どうかよろしくお願いします。

  • 同型写像

    線形写像の基本定理 線形写像f:V→V'について、次の基本定理が成り立つ。 (1)V/Kerf~=Imf……(*) (V/Kerf:商空間、Imf=f(v)) 次に、(1)を次元で考えると、次のようになる。 (2)dimV-dim(Kerf)=dim(Imf)……(**) これらの定理を用いて構わないので、「dimV=dimV'ならば、V~=V'となることを 証明しなさい。」という問題です。同型の記号が出ないので変になってますけど 気にしないでください(笑)。 VがV'と同型でないと仮定する。同型であるならば、Kerf={0}かつImf=V'が成り立 つので、そのときdim(Kerf)=0,dim(Imf)=dimV'である。よって、基本定理(**) から、 dimV-0≠dimV' ∴dimV≠dimV'となり、これは前提条件に反する。よって、dimV=dimV'ならば、V ~=V'となる。(証明終) たぶん私の解答は間違っていると思われるので、正しい解法を教えてください。