無理数√6の性質と背理法による証明

このQ&Aのポイント
  • 無理数√6の性質や背理法を使った証明方法について詳しく解説します。
  • 解答の中で★や☆といった記号が使われており、その部分の意味や正当性について疑問を持っています。
  • また、別解として√6が有理数ではないことを示す方法についても説明します。
回答を見る
  • ベストアンサー

数A背理法のもんだいについて

【問題】 √6が無理数であることを、背理法を用いて証明せよ。 という問題の解答について質問です 【解答】 √6=b/a(a、bは整数)と表せると仮定すると、√6a=bより、両辺を2乗して、 6aa=bb・・・(1) ★aa,bbにふくまれる素数2の累乗の指数は、いずれも偶数であるから 6aa=2・3・aaに含まれる2の累乗の指数は奇数、bbに含まれる2の累乗の指数は偶数であり、素因数分解の一意性より6aa≠bbとなり、(1)に矛盾★ ゆえに、√6は無理数である ★ではさんだ部分がよくわかりません… あと、別解として √6が有理数だとすれば、√6=q/p(p,qは互いに素な自然数(整数?))と表せる。 これより、6pp=qq ☆左辺が2で割り切れるので右辺も2で割り切れなければならず、qは2で割り切れる。 よって、右辺が4で割り切れるので左辺も4で割り切れなければならず、qも4で割り切れる。☆ これは、p、qが互いに素であることに矛盾する。 ゆえに、(背理法により、)√6は無理数である も可能でしょうか? でも☆の部分で、「左辺に6ってあるから2じゃなくて3で割り切れるので~」という風にもなる…?とか考え出したらよくわからなくなっちゃって… ★の部分と☆の部分についてお願いします(> <)

質問者が選んだベストアンサー

  • ベストアンサー
  • DJ-Potato
  • ベストアンサー率36% (692/1917)
回答No.1

☆も★も基本的に同じアプローチなので、OKだと思います。 左辺に6があるから、3でも割り切れるハズで、というアプローチでも同様です。 2・3・p・p = q・q なので、右辺も3で割り切れるハズ。となれば、qが3で割り切れるので、右辺は9で割り切れるハズ。 すると、左辺も9で割り切れるためには、pも3で割り切れる必要があり、互いの素でないので矛盾。

asd0pse
質問者

補足

★の「aa,bbにふくまれる素数2の累乗の指数は、いずれも偶数であるから」 は、まずbが偶数だからaも偶数、という説明を省いていきなり1行目で両方偶数、と書きだしている、ということですよね? それでは、☆の部分は2でも3でもどっちの考えでも大丈夫なんですね! 良かったです

その他の回答 (2)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.3

あれ? ☆は議論がおかしい. 最後が「qは2で割り切れる」と「qも4で割り切れる」になっちゃってる.

asd0pse
質問者

補足

打ち間違いですすみません

  • Willyt
  • ベストアンサー率25% (2858/11131)
回答No.2

分からないと示された部分と別解だとして提示された部分は全く同じことを表現しているのです。左辺が偶数なので、右辺は偶数。従ってqが偶数でなければならず、これはqが素数であるという条件に反することになります。また、3の倍数であることはここでは全く関係のない事実です。3の倍数であることは偶数であることを妨げる事実ではないからです。

asd0pse
質問者

補足

☆の3で考えるパターンは#1さんのように考えたのですが… え?これだめなんですか?(> <)

関連するQ&A

  • 無理数であることの証明(背理法)について

    √2は無理数であることを証明する問題についてなのですが 背理法を用いて、√2は無理数でないとすると有理数だから √2=p/q (p、qは互いに素な正の整数)とおける・・・ (中略) pもqも偶数であるから、互いに素であることに反する。 よって√2は有理数ではなく無理数である と解説には記載されています。 ここでわからないのですが、なぜpとqは互いに素な正の整数でないといけないのでしょうか?? たとえばp=8、q=6だとしても、結局のところ4/3となるので有理数ということでOKな気がするのですが。。 数学が苦手なので、アホな質問だとは思うのですが、わかる方がおられましたら教えてください。 よろしくお願いします。

  • 対偶と背理法

    こんにちは。  実数xが無理数であるとき,2xは無理数であることを証明せよ。 対偶は 2xが有理数ならばxは有理数である。     2xが有理数なので、2x=p/q (pとqは互いに素)とおける。     両辺2で割って、x=p/2q である。ここで、右辺のp/2qは有理数     であるから、左辺xも有理数。     対偶が真なので元の命題も真である。 これを背理法で解くとき,     2xを有理数とすると,2x=r (rは有理数)とおくと,x=r/2      rは有理数なので,r/2も有理数である。このことはxが無理数で     あることと矛盾する。     したがって,2xは無理数である。 何がどう違うのでしょうか。

  • 数学A 背理法

    √3が無理数であることを用いて、√3+√5が無理数であることを証明せよ。 背理法を用いて証明するらしいのですが、 √3+√5=n/m (但し、mとnは互いに素である整数) とおいていいんですか? このあとが分からないのですが… できれば背理法を用いる方法を知りたいのですが、 ほかの方法があればそちらでもいいです。 よろしくお願いします。

  • 背理法

    問題 背理法を用いて、次の命題が真であることを示す。 命題:”√3は無理数である” ここで、背理法による証明はP→q や qであるが真であることをいうためにはまず ̄q(qではない)と仮定して矛盾を示すのでこの問題では、 √3は有理数であることを仮定しますが、 ここで有理数ということなので、整数、分数と改定しますが、なぜ既約分数で表すのでしょうか? 有理数は整数でもよいので 例えば、3やー4でもよいのでは? そこのところを教えてください。 疑問です。

  • 有理数を文字置き→互いに素な整数?自然数?

    「√3が無理数であることを既知として√2 +√3が無理数であることを示せ」 という問題ですが、背理法で√2 +√3が有理数であることを仮定して解くことは分かったのですが、解説を読むと、 "√2 +√3 = q/p (p, qは互いに素な整数) しかも√2 +√3 >0なのでp, qは自然数とおけます" と書かれています。 "左辺が正だからp, qは自然数だ"という部分がよく分からないです。 (1)p, qがどちらも負の整数だという可能性はどうして無いのでしょうか? (2)p, qを自然数に限らずに整数のままで解いていったとしても解ける気がするのですが、自然数という設定は必要なんでしょうか? よろしくお願いします。

  • 背理法

    例えば√2が無理数であることを証明する際に有理数であると仮定して矛盾を示しますが、その際に√2=q/pと置いたとして、このときに、『p、qは互いに素な整数』とするのはなぜでしょうか?

  • 背理法

    互いに素な正の整数l、mと正の整数nがl^2+m^2=n^2を満たしている。このとき、lとmのいずれか一方は偶数で、他方は奇数となることを示せ。 という問題です。 背理法を使い、l、mがともに偶数の場合とl、mがともに奇数の場合に分けるとヒントにあるのですが、 理解できません。ぜひ解き方を教えてください。よろしくお願いします。

  • 背理法についての質問です

    p√2が無理数であることを背理法を用いて証明せよ。 という問題です。 √2が無理数であるという証明は、下のようにわかるのですが p√2が無理数であるという証明は同じように解けるのでしょうか? √2が有理数であると仮定し,これをn/mとおく. (ここに,m,nは整数で互いに素) 両辺を2乗すると 2=(n/m)^2 2m^2=n^2 よって,nは2の倍数・・・(1) n=2kとおく 2m^2=4k^2 m^2=2k^2 よって,mは2の倍数・・・(2) (1)(2)はm,nが互いに素という仮定に反し,矛盾. ゆえに,√2は無理数

  • 背理法について

    背理法を用いて、次の命題が真であることに示す場合 命題 √3は無理数である √3が有理数であると仮定すると √3=a/b (a,bはお互いに素な整数)よってa=√3b a^2=3b^2 の後がよくわかりません。 お願いします

  • 参考書の整数問題で疑問があります

    x^3-3x-1=0…(*)は、有理数解を持たないことを示せ。 考えは、 整数でない有理数解をもつと仮定すると、その解はp/q(p、qは互いに素の整数、q≧1)とおける。(*)に代入して両辺にq^3をかけるとp^3-3pq^2-q^3=0 p^3=q(3pq+q^2)…(**) 質問1:この式からは、、左辺はpの倍数だから、右辺はpの倍数で、しかしp、qは互いに素なので (ア)q=1 または (イ)q≠1かつ3pq+q^2はpの倍数 という独立した2つの条件が得られるという理解でいいですか? 質問2:参考書は、(ア)の条件だけ考えて、解がp/1(整数)だから前問に矛盾。としてましたが、(イ)は考えなくていいのですか?? 数学は得意ではないので教えてください…