• ベストアンサー

極座標について質問です。

直交座標での面積を求めたい場合、極座標に置き換えても同じ面積になるのでしょうか?また、置き換えた場合はxy平面内で、同じ概形として取り扱ってもよろしいのでしょうか? ある問題で、 x=e^-tcost y=e^-tsint(0≦t≦π/2) の時、x軸とy軸とこの曲線で囲まれる面積を求めよ。という問題で極座標に置き換えて、かつxy平面で同じ概形で考えていて、疑問に思い質問しました。 よろしくお願いします。

noname#230052
noname#230052

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

>直交座標で考えていたグラフの概形は極座標に変えるとやはり概形は変化してしまうものなのでしょうか? 同じグラフ(曲線)なら、概形は座標系によって変わりません。もちろん表現式は座標系で異なります。 例 原点を中心とする半径4の円の式 直交座標:x^2+y^2=4^2 極座標:r=4(0≦θ<2π) と式の表現は異なりますがグラフの概形は同じです。 直交座標の直線:x=aを極座標で表すと 極座標の直線は r=a/cosθ(-π/2<θ<π/2) これも式の表現は異なりますがグラフの概形は同じです。

その他の回答 (1)

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「同じもの」の面積が座標系によって違ったらおかしいと思いませんか?

noname#230052
質問者

補足

ご回答ありがとうございます。 面積の方はよく理解できました。ただ表し方だけを変えただけなので面積は変化はしないですよね・・・それに気づくことが出来ました。ありがとうございます! では,直交座標で考えていたグラフの概形は極座標に変えるとやはり概形は変化してしまうものなのでしょうか? よろしくお願いします。

関連するQ&A

  • 座標

    Oを原点とするxy平面において、点(1,0)を通りy軸に平行な直線をlとする。l上にない点P(x、y)からlに下ろして垂直とlとの交点をQとする。点Pが(OP-)/(PQ-)=1をみたしながらxy平面上を動くとき、Pがえがく曲線Cの方程式を求めよ。また、Cとx軸との共有点およびCとy軸との共有点の座標を求めよ。 途中式もお願いします よろしくお願いします

  • 各座標軸との交点についての質問

    座標の問題についての質問 平面x+4y+8z=6について (1)各座標軸との交点の座標を求めよ 解答(6,0,0)(0,3/2,0),(0,0,3/4) (2)原点から平面上の点までの距離の最小値を求めよ 解答2/3 (3)この平面のx≧0、y≧0、z≧0である部分の面積を求めよ 解答81/16 という問題が答えは分かるのですがいまいち解き方など分からないところがあります どなたかお教えくださるとありがたいです

  • 極値の問題です 途中式もお願いします

    座標平面上の曲線Cが、媒介変数t(t≧0)によってx=tcost, y=tsintと表されているとする。自然数nに対しt=nπに対応する点をPnとする (1)曲線C上の点(tcost.tsint)における接線の方程式をt(t>0)で表せ (2)nを偶数とする。このとき曲線C上の2点Pn,Pn+2における接線の交点の座標を求めよ (3) (2)で求めた交点はすべてある放物線上にある。この放物線の方程式を求めよ

  • 数学

    xyz空間において、xz平面上で曲線C1:z=sinx(0≦x≦π)とx軸で囲まれた図形をD1とし、yz平面上で曲線C2:z=sin^y(0≦y≦π)とy軸で囲まれた図形をD2とする。またtが0≦t≦πの範囲を変化するとき、2点P1(t,0,sint),P2(0,t,sin^2t)を結ぶ線分P1P2が動いて描く曲面をD3とする。図形D1、D2、曲面D3、xy平面の4つで囲まれる立体図形Kの体積Vをもとめよ。 (解) x=y=tで立体図形をz軸に平行なるように切ってできた平面の面積は  1/2・√2・t(sint+sin^2t)=√2/2{tsint+(1-cos2)/2} よって求める体積は V=√2/2∫(0→π){tsint+(1-cos2)/2}dx =√2/2[-tcost+sint;1/4t^2-1/2tsin2t-1/4cos2t]0→π =√2/2(π^2/4+π-5/4) と考えたのですが、間違っていないでしょうか?

  • 数学Cの2次曲線の問題がわかりません。

    数学Cの2次曲線の問題がわかりません。 極方程式r=3/(2+sinθ)が表す曲線をCとする。 (1)曲線Cを直交座標の方程式で表し、その概形をかけ。 (2)x軸の正の部分と曲線Cが交わる点をPとする。点Pにおける曲線Cの接線の方程式を求めよ。 (3)曲線Cの第1象限の部分とx軸とよびy軸で囲まれた図形の面積を求めよ。 (1)からわかりません。 お願いします!

  • 座標が曲がっているということ

    相対論というレベルの問題ではなく、この空間(3次元の直交デカルト座標+時間)を理解する上で座標軸が曲がったものを考えます。どうして曲がっているかというと対象としている具体的な物体の形状が曲がっているからです。場合によっては時間が経過すると形状そのものがヘビのようにグニャグニャと動くことも考えられます。さて、そこに力学の物理法則を導入します。ニュートンの運動方程式(偏微分方程式)みたいなものです。 力学はその導入は通常3次元のデカルト座標によるものだと思います。そこで曲がった空間ではその運動方程式はどうなるのかという問題があります。まず、ベクトル解析の記号を用いて座標系に依存しない形で運動方程式を書き直し、その後、具体的な曲線座標系の諸事情によって式形が決まっていくという図式のようです。例えば、極座標(x=rcosθ,y=rsinθという具体的変換が与えられる)の場合、直交曲線座標(基底ベクトルは場所ごとに変化するが、直交性が成立する)などの性質を使いながら書き下すということになります(演繹する)。 大もとの方程式は座標系に依存しないで書かれている(ということになっている)ので、具体的な座標が式に含まれず、rot, grad, divなどベクトル解析の記号が用いられているわけです。ここで私は全く理解できない壁にぶつかります。rot, grad, divという演算は座標(x,yとかr,θとか)は示されていませんが、定義のうえでは直交デカルト座標(x,y,z)と結びついていると思います。 ベクトルFの発散はdirF=Fx+Fy+Fzということですから、しっかり座標軸と関連しています。だから、rot,grad,divというものを使ってベクトル的に式が展開されていても結局は直交デカルト座標と結びついています。ではそこから曲線座標の運動方程式が”演繹される”のでしょうか。 座標系の分類としては、 一般曲線座標→特殊→直交曲線座標→特殊→直交デカルト座標 ということですね。ですから直交デカルト座標で表示された運動方程式から一般曲線座標での運動方程式を”演繹”によって表示することに違和感を覚えてしまうのです。それともやはり演繹されるものなのでしょうか。 長文になってしまいました。済みません。よろしくお願いします。

  • 座標変換

    3次元(x,y,z)物体の回転でよくx軸、y軸、z軸で回転がありますが、xy平面との角度φを回転させたいときはどうすればいいでしょうか? xy平面との角度をφ回転させた後の座標(X,Y,Z)はどうなるのでしょうか? また X     x Y = T・y Z     z このような行列Tが存在するのでしょうか?

  • 曲線の名前を教えてください。

    媒介変数表示x=e^-tcost y=e^-tsintで表される曲線には名前があるのでしょうか?知っている方いましたら教えてください。

  • 数学 積分

    曲線x=2cost , y=tsint (0≦t≦π/2)と、x軸および、y軸で囲まれた部分の面積を求めよ。 という問題の解き方を教えてください。

  • 曲線の極座標表示【同値の式変形】

    xy座標平面で2点A(a,a),B(-a,-a)からの距離が一定値2a^2であるような点Pの軌跡をCとします。 Cを直交座標表示すると, x^4+y^4+2x^2y^2-8a^2xy=0 となります。 質問 原点を極とし,x軸の正の部分を始線とする極座標(r,θ)でこの曲線を表したいです。x=rcosθ,y=rsinθを代入すると, r^2(r^2-4a^2sin2θ)=0…(1) といったんなりますが,最終的には r^2-4a^2sin2θ=0…(2) となります。式(1)と(2)が同値であるのはなぜでしょうか。僕の理解ではr≠0だからとなりますが,正しいですか。正しいとしたら,なぜr≠0といえるのでしょうか。 よろしくお願いします。