• ベストアンサー

(背理法で)[問]3≦e∈Nの時,既約剰余類全体の集合Z_{2^e}^

(背理法で)[問]3≦e∈Nの時,既約剰余類全体の集合Z_{2^e}^×は巡回群にはならない事を示せ。 を背理法で示したいのですが <a>=Z_{2^e}^×なる生成元a∈Z_{2^e}^×があったと仮定するとどのような矛盾に辿り着きますでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • yoikagari
  • ベストアンサー率50% (87/171)
回答No.1

簡単のためA=Z_{2^e}^×とおく Aの元で、位数が2^(e-1)となるものは存在しないというのがポイントです。 要するに、Aの任意の元は2^(e-2)乗すると単位元になってしまうのです。 まず、補題として以下を示します。 mを奇数、kを正の整数とすると、m^(2^k)≡1 (mod 2^(k+2) )が成り立つ。…※ ※の証明 mは奇数より、整数nを用いてm=2n+1と書けます。 k=1のとき m^2-1=4n(n+1) nが偶数のとき 整数tを用いてn=2tと書けます。 4n(n+1)=8t(2t+1)より4n(n+1)は8で割り切れます。 nが奇数のとき 整数tを用いてn=2t+1と書けます。 4n(n+1)=8(t+1)(2t+1)より4n(n+1)は8で割り切れます。 いずれにせよ、4n(n+1)は8で割り切れます。 以上よりm^2≡1 (mod 8)が成り立つ 即ち、k=1のときm^(2^k)≡1 (mod 2^(k+2) )は成立する。 k=hのとき m^(2^h)≡1 (mod 2^(h+2) )が成り立つと仮定します。 このとき、整数Lを用いてm^(2^h)-1=2^(h+2)*Lと書けます。 k=h+1のとき m^(2^(h+1) )-1=(m^(2^h)-1)(m^(2^h)+1)=(2^(h+2)*L)(2^(h+2)*L+2)=2^(h+3)*L*(2^(h+1)*L+1) となるから、m^(2^(h+1) )≡1 (mod 2^(h+3) )が成り立ちます。 したがって、k=h+1のときもm^(2^k)≡1 (mod 2^(k+2) )は成立します。 よって数学的帰納法により、任意の正整数kに対してm^(2^k)≡1 (mod 2^(k+2) )は成立する。 ※の証明ここまで ※よりeが3以上の整数とするとき、Aの任意の元bに対して、b^{2^(e-2)}=1_Aが成立します。 (ただし、上記の1_AはA=Z_{2^e}^×の乗法における単位元とします) したがって、A=Z_{2^e}^×の位数は2^(e-1)であることを考慮すると、Aには、生成元が存在しないことが分かります。

Dominika
質問者

お礼

バッチシです。 どうもありがとうございました。m(_ _)m

関連するQ&A

  • 巡回群の生成元について

    お世話になります。よろしくお願いします。 「加法群Z、整数n≧0の時 商群Z/nZは、1を含む剰余類によって生成される位数nの有限巡回群である。(代数系入門 松坂和夫著 p.78)」 とあるのですが、 商群Z/nZの1を含む剰余類は{1,1±n,1±2n,・・・}、 2を含む剰余類は{2,2±n,2±2n,・・・}であり、 1を含む剰余類{1,1±n,1±2n,・・・}を ある整数kでk倍しても2を含む剰余類{2,2±n,2±2n,・・・} にはならないと思うので、 全ての元が生成元aの整数k倍で表される(加法の場合)という巡回群の定義に合わず、 「商群Z/nZは、1を含む剰余類によって生成される」というのがおかしいとおもうのですが、どうでしょうか? どなたか私の考えの間違いをご指摘ください。 よろしくお願いします。

  • 代数の問題です。

    大学の代数でこのような問題がでて きて、わからないので教えてくださ い 。よろしくお願いします。加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 代数の問題です。

    加法群G=Zの部分群H=nZ(n≧1は 自然数)に関する剰余類aHをa+nZと加 法的に表す。 また、a,b∈Zに対し、a-bがnの倍数 のときa≡b(mod n)と表し、aとbはn を法として合同であるという。 これは、a+nZ=b+nZと同値である。 剰余類の集合G/H=Z/nZをZnと表す。 Cn:位数nの巡回群={e,a,a^2,…a^n-1}a ^n=eとする (1)a≡a′(mod n),b≡b′(mod n)な らば、a+b≡a′+b′(mod n)を示せ 。 これより剰余類の集合Znに(a+Z)+(b+Z )=a+b+Zによって 積(この場合は和)が定義されることを 示し、 Znに群の構造が入ることを示せ。(Zn をnによる剰余類群という。) (2)剰余類群Znは巡回群Cnと同型であ ることを示せ

  • 2次体の整数環での既約剰余類群はありますか?

    有理整数環Zの剰余環Z/mZの部分集合 (Z/mZ)^*={[a]∈Z/mZ|a∈Z、gcd(a,m)=1} は乗法に関して群をなし、既約剰余類群と呼ばれます。 この整数環Zに対して、2次体の整数環Z[ω]で考えると、 剰余環はイデアルAを用いて、Z[ω]/Aとなりますが、 既約剰余類群に対応するものはあるのでしょうか? 2次体の整数環Z[ω]では、いつでも最大公約数があるとは限らないですが、 一意分解環(UFD)では最大公約数があるので、そのときは 既約剰余類群の対応物があるように思うのですが。 あるのでしたら、名前とか参考サイトを教えていただけないでしょうか? ないのでしたら、なぜないかを教えていただけないでしょうか。

  • x^2 ≡ 1 mod n

    nが素数で nを法とする既約剰余群(Z/nZ)*において 位数が2の元は-1だけであることを示したいのですが、 x^2 ≡ 1 mod n ⇒ (x-1)(x+1) ≡ 0 mod n ⇒ x = ±1 ではダメでしょうか。 ある本だと 以下の定理を使っています。 「Gを有限巡回群とする。|G|の任意の約数dに対して位数dのGの部分群が唯一つ存在する。」 この定理より nの既約剰余群において、位数2の元は-1のみ。 しかし、この定理の証明が私にとって難解で、まったく理解できません。 結局、位数2の元が-1だけであることを言いたいので x^2 ≡ 1 mod nを 上記のように解けば説明になっているのでは?と思いました。 x^2 ≡ 1 mod n を解くだけで説明になっているでしょうか? アドバイスお願いします。 また、もしできたら 「Gが有限巡回群のとき… |G|の任意の…」 の定理の証明をわかりやすく説明していただけないでしょうか。

  • Q.無理数全体の集合Pについて|P|>?0を証明せよ。

    Q.無理数全体の集合Pについて|P|>?0を証明せよ。 レポートを提出したのですが、上記の問いのみ、(1)(下記)を中心に説明不十分とコメントされていました。 レポートは合格したので再提出はないのですが、解答はもらえないため、気になります。 どなたか、修正および補足などをお願いします。 A. Nを自然数全体の集合、Zを整数全体の集合、Qを有理数全体の集合、Rを実数全体の集合とする。 |P|≠アレフゼロを背理法で証明する。 |P|=アレフゼロと仮定すると、アレフゼロからPへの全単射が存在する。 アレフゼロ=|N|だから、NからPへの全単射がある。 A={-n|n∈N}とすると、|A|=|N|=|Q|だから、 A→Qの全単射がある。 Z-{0}=A∪N (A∩N=(空集合)) R=P∪Q (P∩Q=(空集合))だから、|N|=|P|、|A|=|Q|だから、 |Z-{0}|=|R| になる。 |N|=|Z-{0}|であるから、アレフゼロ=|N|=|Z-{0}|=|R|となり、矛盾である。 よって、|P|≠アレフゼロとなる。 また、Pは有限集合であるから|P|<アレフゼロではない。 以上により、|P|>アレフゼロとなる。

  • 既約剰余類群の部分群について

    群論の問題です。 大学のレポート課題ですが、途中までしかわからず困っているため、お時間のある方ご回答よろしくお願いいたします。 問 既約剰余類群(z/7z)^*の部分群を全て求めよ。 答 部分群の位数は群の位数の約数なので、1,2,3,6のどれかである。 ここまでしかわかりません、、

  • 背理法「√2が無理数である」の証明について

    背理法で√2が無理数であることを証明しなさいという問題について質問です。 先日高校の友達に背理法について聞かれたので教えていました。√2が有理数だと仮定して√2=n/m(n/mは既約分数)と表す。そこから二乗したりして計算して最終的にn=2の倍数、m=2の倍数となりn/mは既約分数とは言えず仮定と矛盾するので元の命題が成り立つと言えるという説明をしました。(もちろんどんな計算をすれば良いかもきちんと説明しました。) すると友達から「でもn/m=2k/2tだとして、約分したら既約分数になるじゃん。それが矛盾してるっていうのが意味わかんない。」と言われました。 私は「既約分数だと仮定してたのにまだ約分できた、既約分数じゃなかったってなったら矛盾でしょ?むしろ矛盾を導くために2k/2tに持っていくんだよ。」と説明したのですがあまり納得してないみたいでした。 そこで私もなんだかよく分かんなくなってきてしまったので、他に良い説明の仕方があれば教えていただきたいと思い質問しました。 長々とすみません。よろしくお願いします。

  • Q.Xを自然数全体の集合Nの部分集合とするとき、|X|>アレフゼロを証

    Q.Xを自然数全体の集合Nの部分集合とするとき、|X|>アレフゼロを証明せよ。 以下、ネットでのどなたかの回答を参考に、私なりにテキストを読み返すなどして解釈して、作成しました。 テスト問題としての解答として、 「修正および補足」などをお願いします。 A. |X|=|N|と仮定すると、NからXへの全単射fが存在する。 ∀n∈N ⇒ f(n)=M, ∃M∈X ∀M∈X ⇒ f(n)=M, ∃n∈N つまり 1 ←→ M1 2 ←→ M2 ・ ・ n ←→ Mn ・ ・ このとき、左右の対応関係について、属するか属さないかを分類でき、 N∈Mn または n?Mnとなる。 次に集合M'を以下のように定義する。 (1) n∈Mnのときnを要素としない。 (2) n?Mnのときnを要素とする。 この集合は一意に決まり、また自然数だけを要素に持つ集合となり、明らかに自然数の部分集合を意味する。 つまりM'∈Xであるが、このM'は定義により、上の対応関係からは外れている。 これはNとXとが全単射できたという仮定に矛盾する。 |X|≠アレフゼロ また、写像g:N→Xをgn={n}とすると、これは単射であるから |N|=アレフゼロ≦|X| 以上より、アレフゼロ<|X|

  • 群論の問題です。

    群論の問題です。 整数全体がなす加法群Zに対して、G=Z×Z={ ( a,b ) |a,b ∈ Z } とおき これを成分ごとの加法 ( a , b )+( a' , b' )=( a+a' , b+b' ) により群と見なす。 2元 x = ( 2 , 4 ) , y = ( 6 , 8 )により生成される群Gの部分群Hとし、 写像 φ : G → H を φ(( a , b )) = ( 2a + 6b , 4a + 8b) = ax + by により定義する。ことのきつぎの問いに答えよ。 (1)φは群の同型写像であることを示す。 (2)φによるHの像 K= φ (H) = { φ ( h ) | h ∈ H } はGの部分群であることを示す。 (3)GのKによる剰余群 G / H に対して群の同型 G / H ≅ Z / mZ × Z / nZ がなりたつような自然数 m , n で m が n の約数となるものを求める。 (1)、(2)は示すことができたのですが、 (3)の考え方がよくわかりません。 できるだけわかりやすく教えていただけるとうれしいです… よろしくお願いします。