• ベストアンサー

積分の問題です

1.曲線C:x=x(t),y=y(t) a≦t≦b で∫[a→b]√{x'(t)^2+y'(t)^2}dt 2.曲線C:r=f(θ) α≦θ≦β に対して∫[α→β]√{f(θ)^2+f'(θ)^2}dθ それぞれの解答解説をおねがいします!

質問者が選んだベストアンサー

  • ベストアンサー
  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.3

> 解答ではなくて積分値をおしえてください。 補足に何を書いて見えるか、わかって書いてお見えですか? A#2をチャンとお読みですか? >具体的な曲線長を求める問題であれば、 曲線を与える関数の式が書いてないので解答(回答)不可能です。 と書いたはずです。 被積分関数が与えられていないのにどうして積分値が求まるでしょうか? y=f(x)の時 ∫[a,b]f(x)dx (a<b)の積分値が計算できると思いますか? 例えば、関数f(x)=5x^2+bx+3 のように具体的な関数を与えて初めて、積分値が求まることがわからないのかな??

aerts_2009
質問者

お礼

勘違いしてました すみません

その他の回答 (2)

  • info22_
  • ベストアンサー率67% (2650/3922)
回答No.2

単に曲線の長さを求める公式で 1 は直交座標における媒介変数の公式 2 は極座標r=f(θ)を使った公式 です。 公式の解説なら教科書や参考書に載っていますので自分でお調べください。 具体的な曲線長を求める問題であれば、曲線を与える関数の式が書いてないので解答(回答)不可能です。

aerts_2009
質問者

補足

ありがとうございます。 解答ではなくて積分値をおしえてください。

  • Tacosan
  • ベストアンサー率23% (3656/15482)
回答No.1

「解答」というからにはどこかに問題があるように読めるのですが, どこにあるのでしょうか?

関連するQ&A

  • 微分積分に関する問題なのですが、分かる方教えて下さい><!

    微分積分に関する問題なのですが、分かる方教えて下さい><! 曲線Cが極方程式 r=f(θ) (α≦θ≦β) で表わされる場合の曲線の長さLを与える公式を 「x=f(t)、y=g(t) (a≦t≦b)の長さLは、L=∫b/a√[(dx/dt)~2+(dy/dt)~2]dt=∫b/a√[{f´(t)}~2+{g´(t)}~2]dt」 という曲線の長さの公式を用いて導け。 ちなみに、 ∫b/a → ∫のbからaまでの範囲 (dx/dt)~2 → (dx/dt)の2乗 √の中身は、[ ]で囲んだところまでです。 見にくくて申し訳ないのですが、よろしくおねがいします。

  • 平面スカラー場の線積分について

     x-y 平面上の領域 D で関数 f(x,y) が定義され、D 内にある平面曲線 C を   x = x(t), y = y(t) (a ≦ t ≦ b) ・・・・・・・ (#0) で表わすとき、この「曲線 C に沿った線積分」を線素   ds = √(dx^2 + dy^2) = √( (dx/dt)^2 + (dy/dt)^2 ) dt を使って   ∫_C f(x,y) ds   = ∫[a,b] f( x(t),y(t) ) √( (dx/dt)^2 + (dy/dt)^2 ) dt ・・・・・・・ (#1) と定義する。  (#1)が「曲線 C に沿ってできる」x-y 平面に垂直なカーテン状の曲面の面積を表すことはわかりやすいのですが、ちょっとわかりにくいのが「曲線 C に沿ってできる x に関する」線積分   ∫_C f(x,y) dx = ∫[a,b] f( x(t),y(t) ) dx/dt dt ・・・・・・・ (#2) の定義です。もし、(#0) の曲線 C の y と x が一対一に対応していたら、(#2) の線積分は (#1) の曲面を x-z 平面に投影した図形の面積を表すと解釈してよいのでしょうか。  ベクトル解析の参考書を2冊持っているのですが、そんな説明はどちらの参考書にもないので心配なのです(笑)。

  • 積分の応用問題

    関数f(x)=∫《上がx、下がー2》(t+1)(t-a)dt についてなんですが、a>0において、f(x)の極値を求めて、直線L:y=-x-2と曲線C:y=f(x)が接するようなaの値を求めたいんですが、何からはじめていいかも分かりません。詳しく教えて下さい。

  • 線積分の問題です。

    線積分の問題です。 (x,y)をf(x,y)=(u(x,y),v(x,y))∈R^2に写すC^1級写像f:R^2→R^2が、任意の(a,b)∈R^2に対して、 max{|u_x(a,b)|,|u_y(a,b)|,|v_x(a,b)|,|v_y(a,b)|}≦c を満たすと仮定する。cは点(a,b)の選び方によらない正定数でc<1/2をみたす。また各(a,b)∈R^2に対し、||(a,b)||=sqrt(a^2+b^2)とおく。 γ:[0,1]→R^2で |u(γ(1))-u(γ(0))|≦int_0^1{sqrt(u_x(γ(t))^2+u_y(γ(t))^2)sqrt(x'(t)^2+y'(t)^2)}dtは成立している 任意のP,Q∈R^2に対して||f(P)-f(Q)||≦2c||P-Q||を示せ。 という問題で、 ||f(P)-f(Q)||=sqrt(|u(P)-u(Q)|^2+|v(P)-v(Q)|^2) となり、それぞれ |u(P)-u(Q)|^2≦2c^2||P-Q||^2 |v(P)-u(Q)|^2≦2c^2||P-Q||^2となればよいので、 p,q∈[0,1],γ(p)=P,γ(q)=Qとおくと |u(P)-u(Q)|≦int_q^p{sqrt(u_x(γ(t))^2+u_y(γ(t))^2)sqrt(x'(t)^2+y'(t)^2)}dtとなる。 この不等式をcと||P-Q||だけで表したいのですが、どうすればよいですか? よろしくお願いします。

  • 線積分にの問題についてお願いします。

    教えていただきたいのは以下の問題です。 C1: x=t, y=0 (-1≦t≦1) C2: x=cos[t], y=sin[t] (0≦t≦π) C= C1+C2 とするとき ∫[C]・y*e^(x^2+y^2) dx を求めよ 教科書に乗っていた公式? ∫[C]・f(P) dx =∫[a,b]・f(x(t),y(t))*x'(t) dt に当てはめると、f(x,y)=y*e^(x^2+y^2)とおいて ∫[C1]・f(x,y) dx =∫[-1,1]・f(t,0)*1 dt = ∫[-1,1]・0 dt = 0 ∫[C2]・f(x,y) dx =∫[0,π]・f(cos[t],sin[t])*(-sin[t]) dt =∫[0,π]・sin[t]*e*(-sin[t]) dt =∫[π,0]・e*sin^2[t] dt =∫[π,0]・e*(1-cos^2[t])/2 dt = [(e/4)*(2t-sin^2[t])]・[π,0] = (-e/2)*π よって ∫[C]・y*e^(x^2+y^2) dx = ∫[C1]・f(x,y) dx + ∫[C2]・f(x,y) dx = (-e/2)*π ■ としたのですが、計算が複雑でなにか工夫が必要らしいのです、、、 線積分に触れることが普段ないのもあって困ってます。 ヒントだけでいいのでどうかよろしくおねがいします。

  • 線積分の問題ですが、手がつけられません…。

    線積分の問題ですが、手がつけられません…。 R^2の各点(x,y)をf(x,y)=(u(x,y),v(x,y))∈R^2に写すC^1級写像f:R^2→R^2が、任意の(a,b)∈R^2に対して、 max{|u_x(a,b)|,|u_y(a,b)|,|v_x(a,b)|,|v_y(a,b)|}≦c を満たすと仮定する。cは点(a,b)の選び方によらない正定数でc<1/2をみたす。また各(a,b)∈R^2に対し、||(a,b)||=√(a^2+b^2)とおく。 (1)γ:[0,1]→R^2をγ(t)=(x(t),y(t)),t∈[0,1]で表される1対1のC^1級写像で、γによる区間[0,1]の像が、2点γ(0),γ(1)を結ぶ線分となっているものとする。次を示せ。 |u(γ(1))-u(γ(0))|≦∫√(u_x(γ(t))^2+u_y(γ(t))^2)√(x'(t)^2+y'(t)^2)dt (0≦t≦1) (2)任意のP,Q∈R^2に対して||f(P)-f(Q)||≦2c||P-Q||を示せ。 (3)P_0をR^2の1点とし、点列{P_n;n=0,1,2,...}を P_(n+1)=f(P_n),n=0,1,2,... で定める。この点列がR^2の収束点列であることを示せ。 (1)はuとγがどのようにつながっているのかが分かりません。 (2)はノルムの処理がうまくいきません。 (3)は(2)を使う事はわかるんですが、ここもノルムから収束点列へ繋げられません。 よろしくお願いします。

  • ネット上で拾っスカラー場のおかしな問題です(笑)。

     関数 f(x,y) は全微分可能であるとし、C:f(x,y) = k を f の等位曲線とする。このとき、C 上の点 (a,b) における C の接線の方程式を求める。  問題文はこれだけで、答えは > ∂f(a,b)/∂x(x-a)+∂f(a,b)/∂y(y-b)=0 ・・・・・(#) とあったのですが、意味がわかりません。   ∂f(a,b)    ∂f(a,b)   ────(x-a) + ────(y-b) = 0    ∂x      ∂y のことだと思います。定数を偏微分しているので確かに0だとは思いますが(笑)。  変数を新たに追加して以下のように解いてみましたが、(#)になりそうもありません。  点P0(a,b)を通る等位曲線 C を パラメータ t を使って   C: x = x(t), y = y(t) で表す。   a = x(t0), b = y(t0) としたとき C は   f(x(t),y(t)) = f(a,b) を満たす。  両辺を t で微分すると   (∂f/∂x)(dx/dt) + (∂f/∂y)(dy/dt) = 0.  したがって   (∂f/∂x, ∂f/∂y)・(x'(t), y'(t)) = 0.  求める接線の方程式は   (x, y) = (a, b) + m(x'(t), y'(t)).

  • 数学の問題がわかりません!

    a>1とする。xy平面上において点(a,a)を中心とする半径rの円(x-a)^2+(y-a)^2=r^2を考える。 この円が曲線C:xy=1(x>0)に接するのは、半径rがどのような値のときであるかを調べてみる。 この半径rの円が曲線Cと接するとき、その接点のx座標は 曲線y=f(x)=(x-a)^2+((1)/(x)-a)^2 と直線y=r^2が接する場合の接点のx座標と一致する。 1<a≦(ア) のとき、y=f(x)はx>0においてx=bで極大となり、x=c=(イ) X=d=(ウ) (c<d)において極小となる。したがって、x座標がbなる点で曲線Cに接する円のほかに、半径r=(エ) の円がx座標のc,dなる2点において曲線Cに接する。 どう計算すればいいのでしょうか? 解説も交えていただけるとありがたいです

  • 微積分の問題です

    高校数学IIの問題です。 f(x)=x^3-3x とするとき、 (1)曲線y=f(x)上の点(a,f(a))における接線の方程式をすべて求めよ。 (2)曲線y=f(x)上の接線のうち、点(2,2)を通るものをすべて求めよ。 (3 )点(2,t)から曲線y=f(x)に3本の接線が引けるとき、tの値の範囲を求めよ。 回答してきただきたいです。

  • 積分の問題(曲線の長さ)です。

    『曲線 y=x^2/2 (0≦x≦1) の長さを求めよ。』という問題です。 以下のように解いてみました。 曲線の長さをSとすると, S=∫√{1+(dy/dx)^2}dxなので, S=∫[0→1]√(1+x^2)dx x=tanθと置くと, S=∫[0→π/4](1/cos^3θ)dθ=∫[0→π/4]{1/(1-sin^2θ)cosθ}dθ さらにt=sinθと置くと, S=∫[0→1/√2]1/(1-t^2)^2dt=∫[0→1/√2]1/(1-t)^2・(1+t)^2dt =∫[0→1/√2]{1/2(1-t)^2+1/2(1+t)^2}dt=[1/2(1-t)-1/2(1+t)][0→1/√2] =√2 となったんですが添削をお願いします。