• 締切済み

これは間違っていますか?

今、fは(x,y)で連続、かつ1回x,yについての偏微分可能とする。 このとき、 u(x,y)=∂f/∂x=lim(h→0)1/h{f(x+h,y)-f(x,y)}とすれば、 ∂u/∂y=lim(k→0)1/k{u(x,y+k)-u(x,y)}と表せる。さらに ここでは∂u/∂yも存在し、(x,y)で連続とする。 しかし、もともと、hは十分小さい条件であるため、 ∂u/∂y=lim(h→0)1/h{u(x,y+h)-u(x,y)}・・・・・(1) でも表すことはできる。 果たして(1)の式は間違っていますか?

noname#96505
noname#96505

みんなの回答

  • alice_38
  • ベストアンサー率43% (75/172)
回答No.2

式(2)は、違います。 ♯1に「limの中の式の変数名と衝突さえしなければ」 と書いておきました。 f(x) = sin x を f(t) = sin t と書いても f の意味は変わりませんが、 f(x,t) = t sin x を f(t,t) = t sin t と書いたら f(x,t) と f(t,t) は異なる関数です。 一方は二変数、もう一方は一変数関数ですね。 (2)では、二つの h が衝突して 混同されているのです。

  • alice_38
  • ベストアンサー率43% (75/172)
回答No.1

式(1)は、合っています。 関数 f(x) = sin x のことを f(t) = sin t と書いても f の意味は同じだったり、 総和変数を Σ[k=1…n] a(k) と書いても Σ[j=1…n] a(j) と書いても同じ式 だったりするのと同様に、 lim の変数も、lim の中の式の変数名と衝突さえ しなければ、適当に置き換えて構いません。 ここまでは、微分や極限とは直接関係がない、 変数名についての単純な話です。 しかし、「もともと、h は十分小さい」云々 の箇所を見ると、何か変な誤解をしている印象 が拭いきれません。 貴方が何に戸惑っているのか、 もう少し詳しく聞いてみたい気がします。

noname#96505
質問者

補足

回答ありがとうございます。 もしも、(1)が正しいと仮定すれば、 ∂u/∂y =lim(h→0)1/h{u(x,y+h)-u(x,y)} =lim(h→0)1/h{1/h(f(x+h,y+h)-f(x,y+h)-f(x+h,y)+f(x,y))} ・・・・(2) という式でかけてしまう。 すなわち、yの微小変化量をxの微小変化量と同じ量で近づくことを意味する。 「もともとhは十分小さい」という書き方はあまりよくないですね。 すみません。 そうなると、(2)の式は間違っていますか? ∂f/∂xの存在性、∂u/∂yの存在性の仮定からしても yの微小変化量をxの微小変化量と同じと考えても (2)で表せると思って、 さらには偏微分の順序交換fxy=fyxが成り立つ証明にも使えるのでは ないかと。

関連するQ&A

  • 合成関数の微分の証明

    合成関数の微分の証明についての質問ですが、”やさしく学べる微分積分”には以下のような式変形を経て証明しています。 g(u+k)-g(u)/k = g'(u)+O(k) (lim k→0 O(k)=0) g(u+k)-g(u) = k{g'(u)+O(k)} この式は、k=0のときも成立しkはどんな値でも良いため、 k=f(x+h)-f(x) とおけ、f(x+h)=f(x)+k,u=f(x) ゆえに、  lim g(f(x+h))-g(f(x))/h=lim g(f(x)+k)-g(f(x))/h =lim g(u+k)-g(u)/h=lim k{g'(u)+O(k)}/h =lim f(x+h)-f(x)/h ・k{g'(u)+O(k)} f(x)は微分可能で連続。ゆえにh→0 k→0 したがって、極限値は存在し、  =f'(x){g'(u)+0}=f'(x)g'(x) ゆえに、y'=g'(x)f'(x) が成立する。 とあります。 私には、結局はf(x+h)=f(x)+k と置けて、コーシーの平均値の定理のように、平均値の定理のx軸をf(x)軸つまりはu軸のように考えて、 f(x)=uの置き換えをすれば、f(x+h)=u+kとおけ、今までの微分計算と同様に計算できるというふうにしか読めません^^; でも、どうもg(u+k)-g(u) = k{g'(u)+O(k)}の式に 線形性なのかなんなのか、特別な関係を示す意味があるような気がするのですが、どなたか解説していただけませんでしょうか?

  • f(x,y)=(x^2+y^2)/sin(x^2+y^2)^-1/2 

    f(x,y)=(x^2+y^2)/sin(x^2+y^2)^-1/2 の連続性を調べ、一階偏導関数をすべてもとめ、その連続性を調べ、(0,0)での全微分可能性を調べよ。 という問題がでました。 一階偏導関数はもとめられるのですが、f(x,y)の連続性、一階偏導関数の連続性がどうのようにしてもとめればいよいのかわからなくなってしまいました…ご教授ください! 全微分可能性は ε(h,k)=f(h,k)-f(0,0)=(h^2+k^2)sin(x^2+y^2)^-1/2 η(h,k)=ε(h,k)/(x^2+y^2)^-1/2 lim((h^2+k^2)^1/2→0)=0 よって(0,0)で全微分可能。 で大丈夫ですか?

  • 大学院入試の微分方程式の問題がわかりません!

    問題の式を書くとややこしいので画像を添付しました。 【初期条件: y(0)=y0,y'(0)=y1】 画像の微分方程式について (1) 変数変換 u=( x^2 + 2 )y を行って、uに関する微分方程式を導け (2) (1)で導いた微分方程式を解くことで、元の微分方程式の解yを求めよ (3) 【x→∞】lim y(x)を計算せよ また、【x→-∞】lim y(x)が存在するためのy0,y1の条件を求めよ (1)の変数変換を行うときに uを微分してu' u'' を出し それらをy y' y'' の式に直して代入すればできると思うのですが その変形がややこしすぎて何回やっても間違えてしまいます そこで知識ある皆様のお力をお貸しいただければと思い質問しました。 何卒よろしくお願い致します。

  • 合成関数の微分公式について

    すいません。 なんども。 もうひとつおねがいします。 困っています。 u=f(x),y=g(u)がともに微分可能のとき, 合成関数も微分可能であり、土の式が成り立ちます。 y=g{f(x)}=g・f(x) dy/dx=dy/du・du/dx または y'=g'(u)・f'(x) これを、証明するには、 du/dx= lim f(x+h)-f(x)/h , h→0 dy/du= lim g(u+k)-g(u)/h h→0 ここで、k=f(x+h)-f(x)とおくと、kキ0のとき dy/dx=[g(f(x))]'   =lim g(f(x+h))-g(f(x))/h まではわかるのですが、 =lim g{f(x+h)}-g{f(x)}/{f(x+h)-f(x)}  ・{f(x+h)-f(x)}/h はどのうに現れるのでしょうか? できれば、途中計算がほしいです。 お願いします

  • 二変数関数微分

    極座標変換をしてからx=rcosθ,y=rsinθにすれば わかりやすいときいたんですが ちょっと分からない問題がいくつかあるので アドバイスお願いします。 (1)極限が存在するかどうか調べよ lim((x,y)→(0,0)) xylog(x^2+y^2) (2)原点における連続性、偏微分可能性、微分可能性を求めよ。 f(x,y)=xysin(1/√(x^2+y^2))・・・((x,y)≠(0,0))     0・・・((x,y)=(0,0)) です。1は極座標でやってみたのですが log rが残ってr→0にするとその部分が どうなるのかわからなくなってしまいました。 2は微分可能の定義より f(a+h,b+k)=f(a,b)+fx(a,b)h+fy(a,b)k+α√(h^2+k^2) で f(x+a,y+b)=√(1-a^2-b^2)-ax/√(1-a^2-b^2)-bx/√(1-a^2-b^2)+α√(a^2+b^2) よりαが存在するから微分可能。 よって連続、偏微分も可能である。 という解答でいいのでしょうか? 自分的にはちょっと違うような気もするので教えて下さい。

  • Fxy=Fyx の証明はこれではだめですか?(偏微分の順序交換の証明)

    Fは(x,y)で連続かつx,yについて偏微分可能し、FxyとFyxも(x,y)において存在するとき、Fxy=Fyxとなる。なお、FxyとはFをxについて偏微分して次にyについて偏微分したものとする。 これを示すと Fxy=lim(h→0)1/h{Fy(x+h,y)-Fy(x,y)} Fy=lim(h→0)1/h{F(x,y+h)-F(x,y)}より、 Fxy=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} 一方、Fyx=lim(h→0)1/h{Fx(x,y+h)-Fx(x,y)}、 Fx=lim(h→0)1/h{F(x+h,y)-F(x,y)}より Fyx=lim(h→0)1/h{1/h(F(x+h,y+h)-F(x,y+h)-F(x+h,y)+F(x,y))} =lim(h→0)1/h{1/h(F(x+h,y+h)-F(x+h,y)-F(x,y+h)+F(x,y))} したがって Fxy=Fyxが成立する。 こうやって示したのですが、ダメですか?

  • 関数の連続性

    f(x)=xsin(1/x) (x≠0) f(x)=0 (x=0) (1)x=0におけるf(x)の連続性、微分可能性を調べよ。 (2)x≠0におけるf(x)の連続性、微分可能性を調べよ。 (1)は lim[x→0]xsin(1/x)=0=f(0) より連続性をもっている。 f'(x)=lim[h→0]{f(0+h)-f(0)}/h =lim[h→0]sin(1/h) となって極限値は存在しないよってf(x)は原点において 微分不可能である。 上記が自分なりに考えた答えです。あっているかどうかは分かりません。 解答がない為。 (2)についてですが、 x≠0の時は当然連続であるなんだと思いますが、どのように証明したらよいのですか?また、微分可能性はどのようになるのでしょうか? ご指導おねがい致します。

  • 関数の連続性ε-δ論法

    f(x)=xsin(1/x) (x≠0) f(x)=0 (x=0) (1)x=0におけるf(x)の連続性、微分可能性を調べよ。 (2)x≠0におけるf(x)の連続性、微分可能性を調べよ。 (1)ε-δ論法を用いて連続性を調べる。 0<x-0<δのとき |f(x)-f(0)|=|xsin(1/x)-0|=|x|*|sin(1/x)|≦|x|<δ 上記の式より lim[x→0]xsin(1/x)=0である。 よって x=0のときf(x)は連続である。 f'(x)=lim[h→0]{f(0+h)-f(0)}/h=lim[h→0]{hsin(1/h)}/h =lim[h→0]sin(1/h) lim[h→0]sin(1/h)の極限値は存在しない よってf(x)は原点において微分不可能である。 (2)(1)と同じようにε-δ論法を用いて連続性を調べる。 任意の点をaとおいて 0<|x-a|<δのとき |f(x)-f(a)|=|xsin(1/x)-asin(1/a)| =(x-a)sin(1/x)+a{sin(1/x)-sin(1/a)} =(x-a)sin(1/x)+2a[sin(1/2){(1/x)-(1/a)}cos(1/2){(1/x) + (1/a)}].....和と積の公式 となるのですが、ここから上記の式が 上記の式<δ にどのようにすれば良いのかが分かりません。 また、微分可能性は lim[h→0]{hsin(1/h)-asin(1/a)}/h =lim[h→0]sin(1/h)-{asin(1/a)}/h となってよくわからなくなってしまいます。 お願いします教えて下さい。 以上よろしくお願い致します。

  • 全微分可能なら…

    一変数関数f(x)について、全微分可能なとき、 f’(x)は連続と言えるのでしょうか? f(x)が全微分可能なとき、f(x+dx)-f(x)=f’(x)dxが成り立つから、 lim[h→0]f’(x+h)dx=lim[h→0]f(x+dx+h)-f(x+h)= =f(x+dx)-f(x) (←y=f(x)は微分可能なので連続だから) =f’(x)dx となって、f’(x)が連続ということになってしまうんですが、 そんなこと聞いたことがないので、たぶん、 僕の証明がおかしいのだと思うのですが、 僕の証明のどこが間違っているのでしょうか?

  • 全微分可能の概念がいまひとつ分からないのですが

    全微分可能とは、大雑把にいえば全ての方向において微分可能ということですよね。 しかし、解析学の教科書では、 (△z-Ah-Bk)/(sqrt(h^2+k^2))→0 ((h,k)→(0,0)) (ただし、△z=f(a+h,b+k)-f(a,b))……(1) となるようなh,kに無関係な定数A,Bが存在するならば、関数f(x,y)は(a,b)において全微分可能と定めています。 ところで、1変数関数が微分可能の時は、 f(x+△x)-f(x)=(△f(x)/△x)△x であり、 これから、2変数関数が全微分可能の時は、 u(x+△x,y+△y)-u(x,y)=(△u/△x)△x+(△u/△y)△y ……(2) が成り立つことは、図を書いてみたりすると何となくわかる気がするのですが、(1)と(2)の連帯性が見えてこないのです。 ちなみに、複素解析では(2)を使っているので、 (2)を全微分可能の概念と考えておいたらいいでしょうか?この方が直感的に分かりやすい気がするので。(1)の概念 は抽象的でとらえにくい気がします。