• ベストアンサー
※ ChatGPTを利用し、要約された質問です(原文:μ((a,b))=∫[a..b]x^2dx (-∞<a<b<∞)は何故,全ボレル集合体B(R)の一意的測度?何故μ({0})=0なの?)

質問:a finite measureと一意的測度について

rinkunの回答

  • ベストアンサー
  • rinkun
  • ベストアンサー率44% (706/1571)
回答No.13

> A_i⊆A_i+1とh'(D∩A)<+∞を仮定しない場合がどうしても示せません。 前者は、あらかじめ有限和について証明しておき、一般には  B_n = ∪[i=1..n]A_i とおけば、B_i⊆B_i+1なので、これに帰着する。 後者は、h'(D∩A)=+∞のとき、  h'(D)≧h'(D∩A)+h'(D∩A^c) を言うにはh'(D)=+∞を言えば良いが、これは  D∩A⊆D を使えば、すぐ言える。

Dominika
質問者

お礼

どうもありがとうございます。 漸く解決いたしました。

関連するQ&A

  • 証明問題, B(R^n)=σ(J_n)を示せ(B(R^n)はn次元ボレル集合体)

    今日はよろしくお願い致します。 B(R^n)をn次元ボレル集合体,σ(J_n)をn次元区間J_nから生成されるσ集合体とする。 [問] B(R^n)=σ(J_n)となる事を示せ。 [証] R^nの位相はn次元開区間の任意個の和集合T:={∪[λ∈Λ]I_λ∈2^X;I_λはn次元開区間(Λは非可算集合)}と採れるから B(R^n)=σ(T)(∵ボレル集合体の定義) =∩[B∈{B;T⊂B,BはR^n上のσ集合体)}]B(∵生成されるσ集合体の定義より) =R^n (∵Tを覆えるのはR^nしかないので (∵もし,仮にR^nの真部分集合でTを覆えたものがあったとすると 少なくとも(-∞,+∞)×(-∞,+∞)×…×(a,+∞)×…×(-∞,+∞)(a∈R,n個の直積集合) というような有界な区間がある。この時, (-∞,+∞)×(-∞,+∞)×…×(a-1,+∞)×…×(-∞,+∞)∈Tなのに (-∞,+∞)×(-∞,+∞)×…×(a,+∞)×…×(-∞,+∞)はTを覆えてない)) 同様に σ(J_n)=∩[B∈{B;J_n⊂B,BはR^n上のσ集合体)}]B(∵生成されるσ集合体の定義より) =R^n(∵上記と同じ理由) 従って B(R^n)=σ(J_n)となったのですがどこかおかしいでしょうか?

  • σ集合体はボレル集合体の特別な集合体?

    ボレル集合体の定義は 「Xを集合とし,B∈2^Xとする。この時Bが (i) B≠φ (ii) A∈B⇒A^c∈B (iii) A_k∈B(k∈N)⇒∪[k∈N]A_k∈B を満たすならばBをX上のボレル集合体という」 σ集合体の定義は 「BがX上のボレル集合体とする。この時Bが (i) X∈B (ii) A∈B⇒A^c∈B (iii) A_k∈B(k∈N)⇒∪[k∈N]A_k∈B を満たすならばBをX上のσ集合体という」 と解釈したのですがこれで正しいでしょうか?

  • Q∩[0,1]全体の測度=Σ[r∈Q∩[0,1]]点{r}の測度=0は何故?

    Q∩[0,1]全体の測度=Σ[r∈Q∩[0,1]]点{r}の測度=0 と本で見かけたのですが測度とは関数の事ですよね。だからこれは Q∩[0,1]全体の測度による像=Σ[r∈Q∩[0,1]]点{r}の測度による像=0 という意味ですよね。 測度とは 「(Ω,B)を可測空間(Bはσ集合体)とする時,f:B→Rが(Ω,B)上の可測 ⇔ (i) ∀A∈B,f(A)∈{r∈R;0≦r}∪{+∞},f(φ)=0 (ii) ∀m,n∈N (m≠n), B∋b_m,b_nは互いに素 ⇒ f(∪[k∈N]b_k)=Σ[k=1..∞]f(b_k)」 の事だと思います。 点{r}の測度fによる像=0だから Σ[r∈Q∩[0,1]]点{r}の測度fによる像=0なんだと思います。 どうして (点{r}の測度fによる像)=0 と言えるのでしょうか? つまり, (Q∩[0,1]全体の測度fによる像)=f(∪[b∈Q∩[0,1]]{b})=Σ[b∈Q∩[0,1]]f({b})と変形できると思いますが これからどうしてf({b})=0が言えますでしょうか? 推測ですが f({b})=#{b}/#(Q∩[0,1])=1/(アレフ0)=0と乱暴に計算してもいいでしょうか? (上の定義からはf({b})=#{b}/#(Q∩[0,1])と書ける事すらも言えてませんが…)

  • 「可測空間(A,B)上のf-可測集合全体Mはσ集合体をなす」の証明

    下記の命題の(iii)がどうしても示せません。 [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度。 ⇔(def) (i) f(2^A)⊂[0,∞],特にf(φ)=0 (ii) C⊂D(C,D∈2^A)⇒f(C)≦f(D) (iii) f(∪[n=1..∞]C_n)≦Σ[n=1..∞]f(C_n) (C_n∈2^A (n∈N)) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度とする。E(⊂A)は(A,B)上でf-可測(集合)。 ⇔(def) ∀C∈2^A,f(C)=f(C∩E)+f(C∩E^c) [命題] (A,B)を可測空間とする。(A,B)上のf-可測集合全体Mはσ集合体をなす。 [証] (i) E∈M⇒E^c∈Mは 今E∈Mなので∀C∈2^A,f(C)=f(C∩E)∪f(C∩E^c)が成立。 これはf(C)=f(C∩E^c)∪f(C∩(E^c)^c)とも書けるのでE^c∈M (ii) φ∈M ∀C∈2^A,f(C)=f(C∩A)=f(C∩(φ∪φ^c))=f((C∩φ)∪(C∩φ^c))と書ける。 従って,f-可測の定義よりφ∈M (iii) E_i∈M (i∈N)⇒∪[i∈N]E_i∈M E_i∈Mより∀C∈2^A,f(C)=f((C∩E_i)∪(C∩E_i^c))と書ける。 これからどうやって f(C)=f((C∩(∪[i∈N]E_i))+f(C∩(∪[i∈N]E_i)^c) が導けますでしょうか?

  • Lebesgue測度μではμ(S\T)=μ(S)-μ(T)と変形できるの?

    Cantor集合の説明で [0,1]を3等分して(1/3,2/3)を取除くと[0,1/3]と[2/3,1]が残る。次に[0,1/3]と[2/3,1]を3等分して (1/9,2/9),(7/9.8/9)を取除く。 n回目には長さ1/3^nの区間2^(n-1)を取除いた事になるので取除かれた区間全体Gの長さμ(G) (μはLebesgue測度)は Σ[n=1..∞]2^(n-1)/3^n=1 …(1) 従って μ([0,1]\G)=μ([0,1])-μ(G)=(1-0)-1(∵Lebesgue測度の定義と(1))=0 でこの差集合[0,1]\GをCantor集合という。 でμ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのか分かりません。 Lebesbue測度の定義は下記のとおりだと思います。でもどうしても差集合のルベーグ測度が夫々のルベーグ測度の差になる事が導けません。μ([0,1]\G)=μ([0,1])-μ(G)となぜ変形出来るのでしょうか? [定義]Aを全体集合,B⊂2^Aとする。BがA上でσ集合体をなす時,AはBの可測空間をな すと言い,(A,B)と表す。 [定義] (A,B)を可測空間とする。写像f:B→R∪{+∞}は(A,B)上で測度をなす。 ⇔(def) (i) ∀A∈B,f(A)∈{r∈R;0≦r}∪{+∞},f(φ)=0 (ii) ∀m,n∈N\{0} (m≠n), b_m,b_n∈B且つ b_m∩b_n=φ⇒f(∪[k=1..∞]b_k)=Σ[k=1..∞]f(b_k) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度をなす。 ⇔(def) (i) f(2^A)⊂[0,∞],特にf(φ)=0 (ii) C⊂D(C,D∈2^A)⇒f(C)≦f(D) (iii) f(∪[n=1..∞]C_n)≦Σ[n=1..∞]f(C_n) (C_n∈2^A (n∈N)) [定義]f:B→R∪{+∞}を可測空間(A,B)上の外測度とする。E(⊂A)は(A,B)上でf-可測 (集合)。 ⇔(def) ∀C∈2^A,f(C)=f(C∩E)+f(C∩E^c) [定義] R^nのm次元区間全{Π[i=1..m](a_i,b_i]\ {∞};a_i,b_i∈R∪{∞}(i=1,2,…,m)} (m≦n)をI(m,n)で表す。 [定義] R^nのm次元区間塊全体{∪[j=1..k]I_i;k∈N\{0},I^m∋I_1,I_2,…,I_k:互い に素}をC(m,n)で表す。 このとき,C(n,n)はR^nで有限加法族をなす。 [定義] 写像g:∪C(n,n)→R^nを C(n,n)∋∀∪[i=1..k]Π[ji=1..n](a_ji,b_ji]→g(∪[i=1..k]Π[ji=1..n](a_ji,b_ji]):= Π(b_i-a_i) (k=1且つΠ[i=1..n](a_j1,b_j1]は有界の時) sup{Π[i=1..n](d_i-c_i);(Π[j1=1..n](a_j1,b_j1]⊃)Π[i=1..n](c_i,d_i]は有界} (k=1でΠ[j1=1..n](a_j1,bj1]は非有界の時) 0 (k=1でΠ[j1=1..n](a_j1,b_j1]=φの時) Σ[i=1..k]g(Π[ji=1..n](a_ji,b_ji]) (k>1で ∪[i=1..k]Π[ji=1..n](a_ji,b_ji]∈C(n,n) (但し ,Π[j1=1..n](a_j1,b_j1],Π[j2=1..n](a_j2,b_j2],…,Π[jn=1..n](a_jn,b_jn]は互 いに素)の時) と定義するとこのgは可測空間(R^n,C(n,n))での有限測度をなす。 そして写像h:2^(R^n)→Rを2^(R^n)∋∀A→h(A):= inf{Σ[k=1..∞]g(E_k);A⊂∪[k=1..∞]E_k (E_k∈C(n,n) (n∈N\{0}))} で定義するとこのhは可測空間(R^n,C(n,n))で外測度をなす。 この時,このhをLebesgue外測度という。 [定義] 写像h:2^(R^n)→R∪{+∞}はルベーグ外測度とする。 L:={E∈2^(R^n);Eは可測空間(R^n,2^(R^n))上でh-可測}をLebesgue可測集合全体の集 合という。 [定義] hをLebesgue外測度とする。制限写像h|Lは測度をなす。 この時,この制限写像h|HをR^n上のLebesgue測度という。

  • f_n=g_n a.e on R^nとする。g_n→g(測度収束)ならばf_n→g(測度収束)を

    次の問題で質問です。 [問]f_n=g_n a.e on R^nとする。g_n→g(測度収束)ならばf_n→g(測度収束)を示せ(f_n,g_n,gはルベーグ可測な関数)。 [証明] R^nでの殆どいたるところでf_n=g_nだというのだから零集合Zを除いたx∈Eではf_n(x)=g_n(x)という意味だと思います。 f_n,g_n,gをE⊂R^n上のルベーグ可測関数とする。 仮定より,0<∀ε∈R,0=lim[n→∞]μ({x∈E;|g_n(x)-g(x)|≧ε}) =lim[n→∞]μ({x∈E\Z;|g_n(x)-g(x)|≧ε}∪{x∈Z;|g_n(x)-g(x)|≧ε})(但しZは零集合) =lim[n→∞](μ({x∈E\Z;|g_n(x)-g(x)|≧ε})+μ({x∈Z;|g_n(x)-g(x)|≧ε})) (∵測度の定義(可算加法性)) =lim[n→∞](μ({x∈E\Z;|f_n(x)-g(x)|≧ε})+μ({x∈Z;|g_n(x)-g(x)|≧ε})) (∵仮定「f_n=g_n a.e.」) =lim[n→∞](μ({x∈E\Z;|f_n(x)-g(x)|≧ε})+0) (∵零集合の定義) =lim[n→∞]μ({x∈E\Z;|f_n(x)-g(x)|≧ε}+μ({x∈Z;|f_n(x)-g(x)|≧ε})) (∵零集合の定義) ≧lim[n→∞]μ({x∈E\Z;|f_n(x)-g(x)|≧ε}∪{x∈Z;|f_n(x)-g(x)|≧ε})) (∵測度の定義) =lim[n→∞]μ({x∈E;|f_n(x)-g(x)|≧ε}+) 即ち, 0<∀ε∈R,lim[n→∞]μ({x∈E;|f_n(x)-g(x)|≧ε})=0. ∴ {f_n}はgに測度収束する。 となったのですがこれで正しいでしょうか?

  • Ω_n:=(-n,-n+1]∪[n-1,n)と置けばσ有限な測度空間?

    「(Ω,B,m)を可測空間とし,m(Ω_n)∈R且つ∪[n=1..∞]Ω_n=Ωを満たす互いに素な可測集合(Ω,B)が存在する時, (Ω,B,m)をσ有限な測度空間と呼ぶ」 という定義で その例として Ω_n:=(-n,-n+1]∪[n-1,n)と置けばσ有限な測度空間である事が分かる。 とだけ説明されてるのですがこれはmやBをどのように定義してあるのでしょうか?

  • R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

    よろしくお願い致します。 A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。 (ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。 (イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。 という問題です。 (ア)について Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1) (但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け, 題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。 それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i} から先に進めません。 λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=Σ[n=1..∞]λ(∪[k=n..∞]A_k)なんて変形もできませんよね。 どのすれば=0にたどり着けますでしょうか? (イ)について 答えは多分Yesだと思います。 Lebesgue可測集合はL:={E∈R^n;E⊂Uでinf{λ^*(U\E);Uは開集合}=0}の元の事ですよね。 なのでLebesgue測度は制限写像λ^*|L:=μと書けますよね。 それで∩[n=1..∞]∪[k=n..∞]A_k∈Lを示せば(ア)からLebesgue測度0が言えると思います。 今,(ア)より inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}=0 と分かったので 0=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i} =inf{Σ[i=1..∞]|I_i\Bd(I_i)∪Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)} (但しBd(I_i)は境界点) =inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)} (∵||の定義) からinf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)} となればI_i\Bd(I_i)は開集合になので inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}=0が言え, ∩[n=1..∞]∪[k=n..∞]A_k∈Lも言え, μ(∩[n=1..∞]∪[k=n..∞]A_k)=λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=0(∵(ア)) となりおしまいなのですが inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)} から inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)} となる事がどうしても言えません。どうすれば言えますでしょうか?

  • (再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

    すいません。 http://okwave.jp/qa4327195.html について再投稿です。 A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて 今,AがLegesgue可測集合である事を示したい訳ですよね。 Lebesgue可測集合とはλをLebesgue外測度とする時, {E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。 そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。 するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。 従って,AがLebesgue可測集合である事が示せなくなってしまいます。 Lebesgue可測集合の定義を勘違いしてますでしょうか?

  • 測度論;完備化、測度零集合について。

    こんにちは、測度論(確率論)を勉強しているのですが、完備化について質問させてください。 まず、ルベーグ測度を考える上でなぜσ-加法族の完備化が必要となるのか? 例えばR上のボレル集合体はRの開集合全体の加算和、加算交差などから成る集合体で極めて多様な集合を含むはずですが、それに含まれない測度零集合がRに存在して、それらを付け加えることで完備になる、という理解をしていますが、ボレル集合体に含まれない測度零集合とはどんなものでしょうか?例を挙げていただけるとありがたいです。 即ち、B(R);R上のボレル集合体, μ;B(R)上の測度として N* = {N⊂R ; NはB(R)に属さず、N⊂A∈B(R) , μ(A)=0}となるN*の要素はどんなものでしょうか? ボレル集合体ではルベーグ測度を考えるのに不十分、という理由が今ひとつ分かっていません。