• ベストアンサー

逆冪集合ってあるの?

集合Aの冪2^Aの存在は冪集合の公理から言えますが逆に 集合AにおいてAを冪集合に採るような集合B(つまり,2^B=A)という逆冪集合の存在は言えるのでしょうか? 言えるのならB=log_2^Aと表記するのでしょうか? 呼び方も逆冪集合と言うのでしょうか?

質問者が選んだベストアンサー

  • ベストアンサー
  • ojisan7
  • ベストアンサー率47% (489/1029)
回答No.2

有限集合の範囲では無理ですね。 たとえば、A={0,1,2}の場合です。Aの基数は2の冪乗でなければなりませんね。要素の個数は0以上の正数でないと訳がわからなくなってしまいます。要素の個数が1.585個の集合って存在しますか?もし、存在すれば、任意の有限集合の「逆冪集合」が存在しそうです。 無限集合についてこのことを考えると面白いですね。このことは、連続体仮説とも関連することです。なんか、公理によってどうにでもなりそうな気もしますが・・・

Dominika
質問者

お礼

有難うございました。大変参考になりました。

その他の回答 (1)

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.1

集合Bが、ある集合Aのベキ集合となるのは、 BがAのベキ集合となるような集合Aが存在するときだけ ですね…って、これじゃ同語反復ですねえ。 具体的に、B = { φ, {φ}, {φ, {φ}} } が 他の集合のベキではないことは、検証できるでしょう? { {φ} } が、Bに属していませんからね。

Dominika
質問者

お礼

有難うございました。大変参考になりました。

関連するQ&A

  • 集合は有限集合と無限集合だけですか?

    有限集合の元の数を考えるとき、 「いかなる有限集合よりも元の数が多い有限集合は存在しない」------(A) ことがわかります。一番大きな基数の有限集合が存在しないと言い換えても良いですね。 ところがここに無限集合の概念を導入すると 「いかなる基数の有限集合よりも大きい集合として無限集合がある」---(A’) ここで「大きい」とは二つの集合の元を対応させて行くと、「大きい」方の元が余ることを言います。 ここでは、“超有限集合”=無限集合という関係が成り立ちます。 さて、公理的集合論の公理により、無限集合Rから常にPower(R)が作れるので、 「いかなる無限集合よりも濃度の数が多い無限集合は存在しない」------(B) が成立しました。 一番大きな濃度の無限集合が存在しないと言い換えても良いですね。 ここで、有限、無限に続く第三の概念として、“超無限集合”=寿限無集合(仮名)という概念を導入します。 すると、(A)に対して(A’)が成り立ったように、(B)に対して(B’)が成り立ちます。 「いかなる濃度の無限集合よりも大きい集合として寿限無集合がある」---(B’) 質問1:このような寿限無集合はZFC公理系で無矛盾に定義できますか? 質問2:集合の種類は有限と無限の二種類でしたが、第三の概念を導入すると、無限集合では成り立たないが寿限無集合の世界だけで成り立つ定理も発見できると思うのですが、このような概念の拡張をした数学者はいましたか? 質問3:有限と無限以外に第三の概念を導入することが無意味であると立証できますか?

  • 集合論 直積集合の定義式

    直積集合の定義を,冪(ベキ)集合を用いているものがあります. 直積集合自体の意味は,たとえば,X×Yで,デカルト平面を想像すればわかります. その定義式は, 集合X,Yについて { (x,y)∈ B(B(U{x,y})):x∈X,y∈Y } ただし,B(・)は,冪集合を表す記号. また,U{・}は,和集合を作る記号で,A U B U C U・・と同じです. 冪集合でまた冪集合を作るような記号らへんのところも特に分かりづらいです.

  • 集合論の空集合の公理で

    お世話になります。 「Q&A数学基礎論入門」(久間栄道 著)を読んでいたら次のようにありました。 無限公理と分出公理があれば空集合の公理は必要ないので,現在では空集合の公理を省いてある体系もある。具体的には{x∈ω'|¬(x=x)}とすれば,これは無限公理と分出公理から存在が言えるが、これはφそのものである。 無限公理は次のように書いてあります。   ∃a((φ∈a)∧∀x∈a((x∪{x}∈a))   このaをω'とする。 疑問…何だか循環論のような気がします。 質問…空集合の公理を採用しない体系での無限公理はどのように書くのですか? どうか教えて下さい。 当方素人ですので、分かり易くお願いいたします。

  • 全ての集合の定義を元とする無限集合は定義可能?

    年末以来ずっとべき集合というものを考えていたのですが、このべき集合というものがある限り、すべての集合を元とする無限集合を定義できない事が判りました。 すなわち、 今、考えられる全ての集合を元とする無限集合Xが定義可能と仮定する。 すると、その無限集合からべき集合Power(X)が必ず定義可能である。 Power(X)はXの元になっていないために、最初の仮定が間違っていることが証明される。 この事実が意味する事は、 「集合Xからべき集合P(X)を造ることが出来る」-----(A) 「集合を元とした無限集合Xを定義することができる」---(B) 暗黙の前提としている公理系では(A)と(B)が両立しないという事になります。 この袋小路はどう考えればよいのでしょうか? (A)が常に真ではない? (B)が常に真ではない? (A)が偽の場合のみ(B)が真である? (A)が真の場合は(B)が偽である? 暗黙の公理系になにか公理を見落としている(不足している)? 考えるヒントを頂ければ助かります。

  • 直積集合の空集合と全集合

    σ集合体Ψ、Ωを使って、(*)のように直積をとった集合族の空集合と 全集合は何になるんでしょうか?ちなみに、Ψは集合Y、Ωは集合Zを もとに作られているとします。 {A×B; A∈Ψ, B∈Ω} (*) 空集合を0で表記すると、(*)の空集合は0×0、全集合はY×Zと思った のですが、正しいでしょうか。また、0×BやA×0はどう扱うのでしょうか。 Y×BとA×Zは全集合ではないというのはなんとなくわかるのですが…。 よろしくお願いします。

  • 公理的集合論で、ある命題を証明?

    選択公理を導入すると、下記の命題(1)が証明できるそうです。(Wikipediaの選択公理の記述) 命題(1):任意の二つの集合 A,B について、A から B への単射があるか、または B から A への単射がある。 素人丸出しの例題で恐縮ですが、上記の命題(1)で、任意の集合として以下を選びます。 集合A:原子の名前を要素とする集合とする。 集合B:地球上の国名を要素とする集合とする。 この場合、AからBへの単射もないし、BからAへの単射もなく、命題(1)が偽であるように思えます。 選択公理を用いると証明できるとされる命題(1)は、何を意味しているのでしょうか。 数学の素人にもわかる簡単な例で命題(1)の意味をご説明いただけると助かります。

  • 数学A 方べきの定理の逆

    方べきの定理について分からないところがあります。 2つの線分ABとCD、またはABの延長ととCDの延長が点Pで交わる時  PA・PB=PC・PDが成り立つならば、4点A,B,C,Dは1つの円周上にある。このことを証明せよ。 という問題です。 今のところ、方べきの定理の逆を使うことしかわかっていません。 明日、板書しなければなりません・・・ できれば図などがあれば幸いです。 よろしくお願いします。

  • 「有限集合の部分集合は有限集合」の証明

    有限集合Xの部分集合Aは有限集合であることの証明がわかりません。 X;集合とします X⊇A とします。 とあるテキストによると,Aが有限集合であるとは, __∀F∈P(P(X))[F;A上帰納的 ⇒ A∈F] との事です。 ここで,Xの冪集合の冪集合P(P(X))∋FがA上帰納的であるとは, __φ∈F∧∀C∈F∀x∈A[C∪{x}∈F] であると事,とされています。 この定義に従って, _X;有限集合 ⇒ A;有限集合 を証明したいのですが,証明がさっぱり分かりません。 是非とも証明を御教え下さい。宜しくお願い致します。

  • 集合の問題について

    集合Aと集合Bがあり、集合A(補集合を含む)を包み込む形で集合B が存在しているってどういう意味ですか?

  • 論理・集合の内包関係

    直感的な疑問がふと湧きましたので質問させていただきます。 不可逆命題「a⇒b」においてa,bを集合A,Bと考えるとA⊂Bが成り立つと思います。 このとき集合Bは集合Aより大きい集合となっているはずです。 命題の中には可逆命題(つまりA⇔B)もありますが不可逆命題が少なくとも1つは存在することは明らかだと思います。 以上の議論からあらゆる命題を考えると不可逆命題が存在する限り"仮定"の集合より"結論"の集合のほうが大きくなっているのではないかと思います。 しかし"仮定"の集合と"結論"の集合は同じ条件を共に持てるから大きさは同じなはずで矛盾しています。 なぜでしょうか?