• ベストアンサー

場合の数 (数A)

初めまして。いつも見させてもらってます。 質問があります。 確率が本当によく分かる本(細野シリーズ)の練習7で疑問が出ました。 (問題) n人が3つの部屋のいずれかに入る。どの部屋にも少なくとも1人は入る。 部屋に区別がないものとして何通りあるか求め (本の解答) 部屋が区別のあるものとして・・ 「空きがあってもなくてもよい」・・3^n通り 「空き1つ」・・3(2^n-2)通り 「空き2つ」・・3通り よって、空きがない場合・・3^n-3(2^n-2)-3通り ゆえに部屋に区別がない場合は空きがない場合に3!で割ったものになる って感じなんですが・・。 (僕の解答) 部屋が区別ないものとしたまま考えて・・ 「空きがあってもなくてもよい」・・3^n÷3!通り 「空きが1つ」・・3(2^n-2)÷3!通り 「空きが2つ」・・1通り これより空きがない場合を求めました。 「空きがあってもなくてもよい」「空きが1つ」については結果論同じ意味をもつ数値になりました。 が・・。「空きが2つ」に関しては本の解答と僕の解答で意味あいが異なってます。 僕の何が間違っているんでしょうか。 本の解答だと3つの部屋に区別がない条件の下での「空きが2つ」は3!で割った2分の1が答えになってしまい気がするんですが。

質問者が選んだベストアンサー

  • ベストアンサー
  • Kules
  • ベストアンサー率47% (292/619)
回答No.2

ちょっと説明しにくいのですが、 部屋に区別がある時とない時では空き部屋の扱いが少し変わります。 区別がある時は「どの部屋が空いているか」によって話が変わるのでどの部屋も対等に扱えますが、 区別がない時は「何部屋空いているか」しか関係なくなるので空き部屋と空いてない部屋の扱いが変わります。 すなわち区別がない時は 「空きがあってもなくてもよい」からと言って 2部屋使っている時と1部屋使っている時を同じように3!で割ってはいけないということです。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (2)

  • Ishiwara
  • ベストアンサー率24% (462/1914)
回答No.3

質問者さんがどこでつまずいておられるのか、理解できません。 どこも矛盾していないように思えますが。 「空きが2部屋」ということは、全員が1つの部屋に集中した、ということですよね。 部屋を区別するなら3とおりだし、区別しないなら1とおりだと思います。

全文を見る
すると、全ての回答が全文表示されます。
  • koko_u_
  • ベストアンサー率18% (459/2509)
回答No.1

n = 3 とすると、あなたの考えだと 「空きがあってもなくてもよい」・・3^3÷3! = 9/2 通り になってしまいますね。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 数A 組み分け

    問 n人を3つの部屋に分けるとき、どの部屋にも少なくとも1人は入るわけ方は何通りあるか。ただし部屋には区別がないものとする。 という問題を解いていたのですが (空き部屋があってよい場合)-(空き部屋が1つの場合)-(空き部 屋が2つの場合) として式を立てていたら、(空き部屋が2つの場合)を出すときに変なことに気がつきました。式で考えると、      0人・0人・n人 の部屋に分けるわけですから      nC0×nC0×nCn×1/2!     =1/2 通り  となってしまいます こんなことはありえるのでしょうか????? ちなみに解答では {3^n-3(2^n-2)-3}/3! が答えになっています。分配法則を使ってるみたいですが(空き部屋が2つの場合)は 3/3!=1/2 になってることがわかります。

  • 確率問題、場合の数について

    以下の問題の解答部分で分からない部分があるので 分かる方いらっしゃいましたら教えて頂けないでしょうか。 ○問題 1から9までの番号札が各数字3枚ずつ計27枚ある。 札をよくかき混ぜてから2枚取り出すとき、 2枚の数字の和が5以下である確率を求めよ ○解答 二枚の数字の和が5以下である数の組は次の6通りである (1,1) (1,2) (1,3) (1,4) (2,2) (2,3) ゆえにその場合の数は2*3C2 + 4*3C1*3C1=42 よって確率は42/27C2 上の部分の「(1,1) (1,2) (1,3) (1,4) (2,2) (2,3)」の6通りであるという部分が分かりません。 場合の数であれば、確かに区別できない番号札なので、(1,2)と(2,1)は同じものとして扱うのは分かるのですが 確率の場合、全ての試行を異なるものとして扱うと習ったので、 それによると(1,2)と(2,1)は異なる試行になるのではないでしょうか? つまり、二枚の数字の和が5以下である数の組は (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (3,1) (3,2) (4,1) 以上の10通りになるというのは何が間違っているのでしょうか?

  • 確率の分母の場合の数

    写真の問い4の問題について。 この問題の解答では、 四枚のカードのとり方は10c4=210 異なる数字の4枚の取り方は 24通り よって、四枚とも数字が異なる確率は 24/210となっています。 この、確率の分母10c4(起こりうるすべての場合の数)を計算するときは、 2と書かれたカード2枚は、ひとつひとつをそれぞれ別のものとして扱うということですか? コンビネーションの定義は、 異なるn個のものからr個のものを取り出す組合せの数なのに、 この問題においての確率の分母の計算のときは、 同じ数字のカードが複数枚あるから 異なるn個のものではなく、 単にn個のものではないかと疑問なのですが。 どなたか解答をお願いします。

  • 数学 場合の数、確率

    場合の数、確率の問題 区別できない8つの玉がある。これを次のように3つの箱に分ける方法はそれぞれ何通りあるか。ただし、1個も入らない箱があってもよい。 (1)3つの箱に区別がないとき (2)3つの箱に区別があるとき (1)で、区別がないので書きだして10通りというのは模範解答にあり、意味も分かりました。 これを使って(2)は、書きだしたそれぞれの入れ方の並べ替え(たとえば 8,0,0 なら3通り)として、総和が45だから45通り これもわかるんですが、この(2)を最初解いたとき、3^8としました。 全然違うのですが、なぜ違うのかが分かりません。 教えてください。 ここから別の問題です。 箱の中に白球、赤球、黒玉がそれぞれ2個ずつ入っている。この箱から1個ずつ球を取り出す操作を何回行い、すべての色の球が取り出されたときに捜査を終了する。 一度取り出した球は箱に戻さないとして、次の問いに答えよ。 (1)4回で操作を終了する確率 (2)5回で操作を終了する確率 (1)の考え方として 4回で操作終了ということは、最初の3回のうちに同じ色の球を2個取るわけです。 2個取る球を色で場合分けしました。 分母 6個の球から3個の球を取り出す方法は6C3だから分母は6C3 分子 同じ球を2個取るのは1通り、残り4つの球から1つ取るから4通り、これらの並べ替えがあるから掛ける3 よって分子は 1*4*3 最後に残り3つの球から上の二色以外の球を取るから2/3を掛ける。 そして、上で求めた確率が色の場合分けより3通りあるから3を掛ける。 としました。 しかし、違いました。 この問題の答えは2/5となるのですが、上のやり方ではなりません。 分子を求めたときに「これらの並べ替えがあるから掛ける3」と書きましたが、これがないと2/5になります。 分かりません。教えてください。 (2)に関しては後ほど捕捉します。

  • 「区別をする、しない」の考え方(高校数学:場合の数・確率などで)

    こんばんは。 今、テキストで場合の数をやっているのですが、基本的なところでつまずいてしまいました。 「大きさの異なる二つのさいころを同時に投げるとき、目の和が8となる場合は何通りあるか」という問題で、正しい解答は、 「大、小のさいころの目をそれぞれx、yとする。 x+y=8のとき (x, y) = (2, 6) (3, 5) (4, 4) (5, 3) (6, 2) の5通り x+y=9のとき (x, y) = (3, 6) (4, 5) (5, 4) (6, 3) の4通り x+y=10のとき (x, y) = (4, 6) (5, 5) (6, 4) の3通り x+y=11のとき (x, y) = (5, 6) (6, 5) の2通り x+y=12のとき (x, y) = (6, 6) の1通り これらは同時に起こらないから、答えは15通り」 とあります。 ですが、私の解答は、「(4, 4)」や「5, 5」や「(6, 6)」も、大小で区別しなければいけない…と思って、二つの場合で考えてしまい、その余分な3つの場合の数を上記の解答に加え、答えを18通りとしてしまいました。しかし、なぜ区別しなくていいかが、よく分からず、質問させていただきました。 場合の数と確率は、高校数学の中で最も苦手な分野で、特に「区別する、しない」の判別でいつも間違えたり、迷ってしまいます。 また、確率は常に「区別する」考え方で解けるとの話を伺ったのですが、それも何でなのか、分かる方が居ましたら、教えていただけると嬉しいです。

  • 場合の数について

    数学の、場合の数の問題です。 袋の中に、1から9までの番号が書かれた玉が1個ずつ、合計9個入っている。この袋の中から、1個の玉を取り出して番号を調べ、袋に戻す。次に再び袋から1個の玉を取り出して番号を調べる。 2つの番号の積が奇数になる場合は何通りあるか。 という問題で、解答は 2回とも奇数の書かれたが取り出される場合であるから、5x5=25とおり ですが自分は、例えば取り出した玉が(3,7)という時と、(7,3)という時を区別せず、これらは1とおりと考えてしまいました。つまり同じ数同士の取り合わせ( (3,3)など )以外は2つの数の順序を入れかえれば同じ組み合わせが存在すると考えて、5+(25-2)/2=15とおりと考えました。(「5」は同じ数同士の組み合わせの個数の意味)。これではダメな理由は、やはり1番目に取り出した数と2番目に取り出した数を区別するからでしょうか?区別するかしないかでいつも迷うのですが、、よろしくお願い致します。

  • 場合の数の問題です。

    数直線上の整数点 x=1,2,3,・・,n に、合計n個の黒又は、白の石を1つずつ、黒石どうしは隣り合わないように置く。黒石を3個使う置き方は何通りあるのか。ただしn≧5 とする。 一見すると、とても簡単な問題ですが、自分が出した答えと解答が間違っていたので、あれ?と思い、疑問に思い、質問することにしました。 自分の解答は・・・ (i)白石が、x=1、x=nにあり、その他は2~n-1にある場合 黒石は、白石の間のn-4の中に、3個置くため、 n-4C3通り (ii)白石がx=1 その他は2~nー1にある場合 黒石は、n-3の中に、3個置くため、 n-3C3通り (iii) 白石がx=n、その他は、1~n-1にある場合も、(ii)と同様で あるため、n-3C3通り (iv)白石がx=2~n-1にある場合 黒石は、両端か、白石の間のn-2個の中から、3個選ぶから、 n-2C3通り (i)~(iv)より 求める場合の数は、(n-4)(n-5)(4n-21)/6 となったんですが、答えとは違っていました。おそらく、99%は自分の解答が間違っているとは思うのですが、どなたかなぜ僕の解答が間違っているのかご教授ください。宜しくお願いします。

  • 場合の数

    場合の数 m^n=3^20を満たす正の整数m、nの組み合わせは何通りあるか? 3の20個の組み合わせに対応すると考えて、n=20、19、18、、、0で21通りでしょうか? 自信はありません。分かる方、解説と解答を宜しくお願いします!

  • 同じものを含む順列の問題でなぜ区別をなくす?

    また解答が意味不明シリーズです。。  【問題】   science の7個の文字を横1列に並べるとき、その並べ方は ア)□ 通りある。   このうち、s が i より左にあり、n が i より右にあるものは、イ)□ 通りある。  【解答】   ア) c , e が 各2個、i , n , s が各1個 なので     7! / 2!2! = 1260 (通り)   イ) ア)において、s , i , n の区別をなくして         1260/3! = 210 (通り) 解答のイ)なのですが、この区別をなくすことの意味が まったくわかりません。なぜこのような解答が出てくるのでしょうか? また問題通りに数え上げることはできないのでしょうか? (ちなみに場合の数・確率は苦手です。。) ご教授宜しくお願いします。

  • 場合の数の考え方

    問題 赤玉3個、白玉3個、黒玉2個、計7個の玉が入った箱からA,B,Cの三人が順にそれぞれ2個ずつ玉を取り出す(取り出した玉は箱に戻さない) (1)A,B,C三人がそれぞれ異なる色の玉を取り出す確率を求めよ まず異なる色の取り出し方が (ⅰ)赤黒・赤白・黒白 (ⅱ)赤白(x)・赤白(z)・赤黒 (ⅲ)赤黒・赤黒・赤白 の3パターン。(後に説明で使うのでx、zとおいておきます) (ⅰ)について (3×2)×(2×2)×(1×1)=24通り A,B,Cがどの取り方(赤黒・赤白・黒白)をするかによって3!通り。よって24×6=144通り そして問題は(ⅱ)の計算なんですが、僕はこう計算してしまいます。 (3×2)×(2×1)×(1×2)=24通り 同じようにA,B,Cがどの取り方をするかで考えるが、同じ赤白(上記x、zのこと)でもそれぞれの玉は区別して考えるとしたので、結局は違うもの。よって(ⅰ)同様に3!通り考えられる(→×)したがって24×6=144通り 多分原因は(3×2)×(2×1)×(1×2)と考えた時点でもうx、zの逆パターンまで数え上げてる、ということだと思います。つまりどの取り方をするかで考えるのは3!/2!=3通り。ゆえに24×3=72通り。ただなんとなくそうだなって思えるくらいであまり理解しているとは思えません。 ちなみに解答では{(3×2)×(2×1)}÷2×(1×2)×3!としていましたが、頭が固いのでちょっと分かりにくいです。 前述しましたがよくこの手の問題(赤・白・黒のカードが1枚・2枚・3枚あり、この6枚のカードをA,B,Cの箱の無作為に2枚ずついれる...など)でよく場合の数の求め方で止まってしまいます。 一番理解したいのは上で間違った計算をした部分についてですが、他にもアドバイス(確率全般について)があればどんなことでもいいのでよろしくお願いします!!