• ベストアンサー

位相(コーシー列、入門レベル)

zk43の回答

  • ベストアンサー
  • zk43
  • ベストアンサー率53% (253/470)
回答No.4

有理数全体で考えたときはコーシー列は収束列とは限らないので、 an→a、bn→bとするのはまずく、 |(am±bm)-(an±bn)|=|(am-an)±(bm-bn)| ≦|am-an|+|bm-bn| を利用して証明するのだと思います。

zoku0855
質問者

お礼

分かりやすい回答ありがとうございます。 私は、コーシー列の定義の読み込みが不十分でした。 証明の際は、必ず定義に立ち返ろうと思います。

関連するQ&A

  • コーシー列について、質問です。

    コーシー列について、質問です。 参考書やネットを参考に解答を作成しましたが、どなたか、修正および補足などをお願いします。 特に、(2)です。 問.{an}をQの中のコーシー列とする。bn=an+1/3n(n=1,2…)とおくとき、次の問いに答えよ。 (1)「 {bn} はQの中のコーシー列であることを証明せよ。」 (1) m>nとします。 a_nはコーシー列なので m,n→∞のとき |b_m-b_n| =|{a_m+1/(3m)}-{a_n+1/(3n)}| ≦|a_m-a_n|+(1/3)|(m-n)/mn| =|a_m-a_n|+(1/3)|{1-n/m}/n|→0 となるのでb_nはコーシー列です。 1/(3n)は有理数なので、a_nが有理数ならばb_nも、b_n=a_n+1/(3n)より有理数である。 よってb_nもQの中のコーシー列である。 (2) 「{an} ~ {bn} (同値)を証明せよ。」 ※コーシー列{an}n=1~∞を単に {an} と表記 {an}n=1~∞ ~ {bn}n=1~∞ を示すには、lim{n→∞}(an-bn)=0を示せばいい。 ∀ε>0に対して、n≧1/3([1/ε]+1) ならば、 |(an-bn)-0|=|an-bn|=|an+1/{3n}-an|=|1/{3n}|=1/3*1/n≦1/3*3([1/ε]+1)<1/{1/ε}=εだから、 lim{n→∞}(an-bn)=0となります。 よって、 {an} ~ {bn} (同値)が証明された。

  • コーシー列に関する証明問題

    問、{an}(n=1,2,…)をQの中のコーシー列とする。   bn=an+(1/2n) と定めるとき、   {an}~{bn} (n=1,2,…) (同値)であることを証明せよ。 という問題で、同値関係の推移律の証明を教えてください。 特に、任意のQの中の3つのコーシー列を{an},{bn},{cn}とした時、 任意の正の有理数εに対して、{an}~{bn}より、 N1<m,n ⇒ |(am-bm)-(an-bn)|< ε/2 とできる。 とありますが、なぜ、ε/2 になるのかわかりません。 よろしくお願いします。

  • コーシー列

    Q(有理数全体の集合)の2つのコーシー列{an},{bn}について、   {an+bn}はQの中のコーシー列であることを証明せよ。 コーシー列の定義より |(am - an) + (bm - bn)| ≦ |am - an| + |bm - bn| までできたのですが、このあと『ε』と上の式をどうやっていけばいいのか分かりません。教えて下さい。 最初の方も間違っているのであれば、詳しく教えて欲しいです!お願いします。

  • コーシー列

    Q(有理数全体の集合)の2つのコーシー列{an},{bn}について、    (1){an+bn}はQの中のコーシー列であることを証明せよ。  (2){an-bn}はQの中のコーシー列であることを証明せよ。 この問題の解き方がわかりません。 『{an-bn}がコーシー列』⇔m>n,lim[n→∞]{(am-bm)-(an-bn)}=0 ⇔m>n,lim[n→∞]{(am-an)-(bm-bn)}=0 m>n,lim[n→∞](am-an)、lim[n→∞](bm-bn)は共に収束するので、 limの分配ができて 以下、続きを教えてください。

  • コーシー列 同値

    コーシ列の問題 コーシ列の問題 コーシー列についての質問です。 数列{an}[∞,n=1]をQ(有理数)の中のコーシー列とする。 bn=an+1/3n(n=1,2,…)とするとき、次の問題に答えよ。 (1)数列{bn}[∞,n=1]はQの中のコーシー列であることを証明せよ。 (2){an}[∞,n=1]~{bn}[∞,n=1](同値)であることを証明せよ。 教えてください。 (1)は |bmーbn| = ・・・ ≦|amーan|+|1/3mー1/3n| =e みたいな流れで証明したのですが、 (2) 反射律 対称律 推移律 を用いて照明するのらしいのですが、 良く分かりません。

  • コーシー列の定理についての証明

    お世話になります。 同値の定義を『2つのコーシー列{an},{bn}について与えられたrに対して、|am - bn| <1/r m.n>NになるようなNが存在する時、{an},{bn}は同値でありA二重波線Bと表すことが出来る。』とする時、 定理;Sが有理数のコーシー列で、しかもSが数列{(n,0)}と同値ではない時 1,0よりも大きい正の整数rが存在し、すべてのnについて 、SはTと同値で、tn>= 1/r もしくはtn<= -1/rを満たす、有理数のコーシー列 T={(n,tn)}が存在する。 2,上のtnについて、{(n,1/tn)}はコーシー列である。 1を証明しようとしたのですが、SがTと同値になるのは分かるのですが、どうやって、tn>= 1/r もしくはtn<= -1/rであることを証明すればいいのか分かりません。 2に関しては数列{(n,1/n)}が0に収束するを使いたかったのですが、どうやって書けば良いのか分かりません。 なるべくわかりやすく教えてください。宜しくお願いします。

  • 実数のコーシー列の積

    有理数の数列A={an},B={bn} がそれぞれ実数a,bに収束する時、AB=an*bn はa+bに収束する事を言えというもんだいです。 定義『Sを実数のコーシー列{an}とし、anは実数aに収束し、もし正の整数rが与えられた時に、|an-a|<Φ(1/r) n>Nを満たすnが存在する場合、Sの極限はaと言える』 と式変形を使って、 |anbn-ab|=<|anbn-an*b|+|an*b-ab|=|an||bn-b|+|b||an-a|...(1)と変形したのですが、ここから先に行けません。何とかして(1)<Φ(1/r1)見たいな感じに出来れば、 abに収束が証明できると思うのですが。anは有界なので|an|=<M(Mは実数)とできる所までは分かりますがこのMの取り扱いと、|b|の取り扱いに 手間取ってます。どなたか分かる方教えてください。分かるようで分かんなくて困ってます。宜しくお願いします。

  • 集合と位相の教科書

    以下のような問題を解けるようになりたいです。できるだけやさしい教科書、参考書、問題集を教えてください。問題集は解説が詳しいものがいいです。 1.集合X,Yと、Xの部分集合A,Yの部分集合Bについて次の等式を証明せよ X×YーA×B=[(X-A)×Y]∪[X×(Y-B)] 2.デデキンドの切断を用いて 2および√5を切断をもちいて表せ 2<√5を切断をもちいて証明せよ 3.sorgenfrey直線Sのなかの2つの部分集合A,Bについてnot(A∩B)≠notA∩notBとなるようなA,Bの例をあげ、その理由を説明せよ 4.命題p_nを-nより小さい、命題q_nをnより大きいとさだめ、Rの部分集合An={x∈R:(p_n∨q_n)(x)が真}とおくとき、 ∪{An:n∈N} ∩{An:n∈N} をもとめよ 5.{a_n}^∞_(n=1)をQのなかのコーシー列とする。bn=a_n+1/2n(n=1,2,...)とおくとき {bn}^∞_(n=1)はQのなかのコーシー列であることを証明せよ {a_n}^∞_(n=1)~{bn}^∞_(n=1)(同値)であることを証明せよ

  • コーシー列

    an=(3+n)/nがコーシー列になることを証明せよ お願いします><

  • コーシー列

    {a_n},{b_n}がコーシー列であるとき{a_n±b_n},{a_n*b_n}もまたコーシー列であることを示せ。 ________________________________ 仮定より任意のε>0に対して、自然数Nが存在して、n,m≧N_1ならば|a_n-a_m|<εである。また任意のε>0に対して、自然数N_2が存在して、s,t≧N_2ならば|b_s-b_t|<εである。このさきの助言が欲しいです・・・・・