• 締切済み

重積分

曲面S:x=(2-v)cosu y=(2-v)sinu z=v {0≦u≦2π,0≦v≦2}及び平面z=0で囲まれた立体をVとする時∫v(2+y)dxdydzを求めよ という問題でまず何をしたらいいのかがわかりません。このような問題の場合どこから求めていけばいいのでしょうか?いろいろな解き方があるみたいなのですが、ひとつも思いつきません。どなたかわかるかた教えていただけないでしょうか。お願いします

みんなの回答

  • at9_am
  • ベストアンサー率40% (1540/3760)
回答No.1

詳しく書くとルール違反になるので概略だけです。 方法1.腕力で解く x,y,z は u,v の関数ですから、頑張ると v=z=f(x,y)を求めることができ、それを元に∫v(2+y)dxdydz を求める事ができます。 方法2.変数変換 dx, dy, dz を変換して du, dv としてあげます。具体的な方法はテキストの「極座標変換」などの辺りを参照してください。

infi
質問者

お礼

ありがとうございます。方法2で書かれている極座標変換は面積分を求めるのと同じような方法で自分にはしっくりきました。方法2のほうでがんばってみます。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • ガウスの発散定理について質問

    xyz空間の原点を中心とし、半径が1の球面をSとします。Sの単位法ベクトルNの方向は、いつもSの内部から外部に向かう―(1)ように選んでおきます。この時、ベクトル場は V(X)= x+2y 3y+4z 5z+6x のS上の面積分 ∫[S]V・dS の値を求めてください。という問題で他の回答者さまに以下のようにご回答いただきましたが、(1)~(3)がわかりません。 質問1(1)はなぜこのベクトルはSの内向きなのでしょうか? 質問2(2)から(3)の途中計算がわかりません。 質問3また(2)の最後はdudvとなっていますが、dxdydzをdudvに変換したのでしょうか?したならどのように変換したのでしょうか? 質問4単位法ベクトルN(u,v)の公式は N(u,v)={1/||xu(u,v)×xv(u,v)||}・xu(u,v)×xv(u,v)とテキストに書かれていますが、なぜ(2)のような式の形なのでしょうか?何か別の公式があるのでしょうか? 途中計算を含めて詳しい解説を宜しくお願いします。 空間の場合のガウスの発散定理より ∫[S]VdS=∫[M]divv・dxdydzより div=∂v1/∂x1+∂v2/∂y+∂v3/∂z(発散の定義)   =1+3+5 =9 (単位球面のパラメーター) X(u,v)= cosu・cosv cosu・sinv sinu Xu(u,v)= -sinu・cosv -sinu・sinv cosu Xv(u,v)= -cosu・sinv cosu・cosv 0 よって外積Xu×Xv= -cos^2u・cosv cos^2u・sinv -2sinu・cosu このベクトルはSの内向きなので、N(u,v)=-(Xu×Xv)となる。-(1) ∫[S]VdS=-9∫[0→2π]∫[0→2π] cosu・cosv cosu・sinv sinu × -cos^2u・cosv cos^2u・sinv -2sinu・cosu dudv―(2) =9∫[0→2π]∫[0→2π]2sin^2u・cosu・dudv―(3) =18∫[0→2π]∫[0→2π]sin^2u・cosu・dudv t=sinuとおくと、dt/du=cosuより、cosudu=dt ∫[0→2π]sin^2u・cosudu =∫[0→1]t^2dt =[t^3/3](0→1) =1/3 ゆえに 18∫[0→2π]1/3dv =∫[0→2π]6dv =[6v](0→2π) =12π(答)

  • 空間におけるガウスの発散定理について

    xyz空間の原点を中心とし、半径が1の球面をSとします。Sの単位法ベクトルNの方向は、いつもSの内部から外部に向かう―(1)ように選んでおきます。この時、ベクトル場は V(X)= x+2y 3y+4z 5z+6x のS上の面積分 ∫[S]V・dS の値を求めてください。という問題で他の回答者さまに以下のようにご回答いただきましたが、(1)~(3)がわかりません。 質問1(1)はなぜこのベクトルはSの内向きなのでしょうか? 質問2(2)から(3)の途中計算がわかりません。 質問3また(2)の最後はdudvとなっていますが、dxdydzをdudvに変換したのでしょうか?したならどのように変換したのでしょうか? 質問4単位法ベクトルN(u,v)の公式は N(u,v)={1/||xu(u,v)×xv(u,v)||}・xu(u,v)×xv(u,v)とテキストに書かれていますが、なぜ(2)のような式の形なのでしょうか?何か別の公式があるのでしょうか? 途中計算を含めて詳しい解説を宜しくお願いします。 空間の場合のガウスの発散定理より ∫[S]VdS=∫[M]divv・dxdydzより div=∂v1/∂x1+∂v2/∂y+∂v3/∂z(発散の定義)   =1+3+5 =9 (単位球面のパラメーター) X(u,v)= cosu・cosv cosu・sinv sinu Xu(u,v)= -sinu・cosv -sinu・sinv cosu Xv(u,v)= -cosu・sinv cosu・cosv 0 よって外積Xu×Xv= -cos^2u・cosv cos^2u・sinv -2sinu・cosu このベクトルはSの内向きなので、N(u,v)=-(Xu×Xv)となる。-(1) ∫[S]VdS=-9∫[0→2π]∫[0→2π] cosu・cosv cosu・sinv sinu × -cos^2u・cosv cos^2u・sinv -2sinu・cosu dudv―(2) =9∫[0→2π]∫[0→2π]2sin^2u・cosu・dudv―(3) =18∫[0→2π]∫[0→2π]sin^2u・cosu・dudv t=sinuとおくと、dt/du=cosuより、cosudu=dt ∫[0→2π]sin^2u・cosudu =∫[0→1]t^2dt =[t^3/3](0→1) =1/3 ゆえに 18∫[0→2π]1/3dv =∫[0→2π]6dv =[6v](0→2π) =12π(答)

  • 3重積分の問題

    ∫∫∫_V x dxdydz V={(x,y,z)|0<=x<=y<=1 , 0<=z<=x+y} という問題の解き方を教えてください。 D={(x,y)| x<=y<=1 , 0<=x<=1} 0<=z<=x+y として zから積分していったら答えが5/24となりました。 しかし3/8とならなければならない問題です。 教えてください。

  • トーラスのガウス写像の問題

    トーラスのガウス写像はトーラス上のx(u,v)を球面のパラメーター表示の-x(u,v) に対応させます。この事を確かめ、ちょうど同じ(u,v)で表される理由を考えて ください。 という問題で、テキストの解答には トーラスのxu(uで偏微分)、xv(vで偏微分)と球面のxu,xvはそれぞれ長さは違い ますが、平行で、したがって、同じ接平面を定め、同じ単位法ベクトルを定めま す。球面ではガウス写像は-1倍です。 と書かれていますが、テキストを見ながら自分なりに解答してみました。間違い があればご指摘、訂正をお願いします。 <単位球面> X(u,v)= cosu・cosv cosu・sinv sinu Xu(u,v)= -sinu・cosv -sinu・sinv cosu Xv(u,v)= -cosu・sinv cosu・cosv 0 <トーラス> xz平面上のz軸と交わらない円が生成する、z軸に関する回転軸をトーラスとい い ます。そのような円は、例えば、0<r<Rに対し、パラメーター表示 R+rcost rsint で与えられます。 したがって、トーラスのパラメーター表示は X(u,v)= (R+rcosu)cosv (R+rcosu)sinv rsinu となります。―i) u曲線はz軸を含む平面上の半径rの円です。 v曲線は水平面z=sinuに含まれる円です。 Xu(u,v)= -rsinu・cosv -rsinu・sinv rcosu Xv(u,v)= -(R+rcosu)sinv (R+rcosu)cosv 0 ですから、これらは直交し、1次独立で、i)は曲面のパラメーター表示を与えま す。 以上より、トーラスのXu,Xvと球面のXu,Xvはそれぞれ長さは違うが、平行で あることがわかる。 したがって、、同じ接平面を定める。 (定理 接ベクトル全体TX0SはXu(u0,v0),Xv(u0,v0)を基底とする2次元線型 空間(平面)である。) (定義 接ベクトル全体の作る線型空間TX0SをX0におけるSの接平面と定め る。)より また、単位法ベクトルの公式 N(u,v)=Xu(u,v)×Xv(u,v)|/||Xu(u,v)×Xv(u,v)||より 球面の単位法ベクトルは、 N(u,v)=(-cos^2u・cosv+cos^2u・cosv-sinu・cosu・cosv^2-sinu・cosu・sin^2v) /1・cosu =(-sinu・cosu)/cosu =-sinu トーラスの単位法ベクトルは N(u,v)={-rcosu(R+rcosu)sinv+rcosu(R+rcosu)sinv-rsinu(R+rcosu)cos^2v-rsinu (R+rcosu)sin^2v} ={-rsinu(R+rcosu)} =-sinu よって同じ単位法ベクトルを定める。  ガウス写像はX(u,v)をN(u,v)に対応させる写像で、X(u,v)の変化ξとN(u,v) の変化dN(ξ)が逆方向の時、ξ方向で、曲面が上昇するのだから、上昇分を測 る量として、 第二基本変形を φ=-ξ・dN(ξ)で定める。 という定義から、トーラスのガウス写像はトーラス上のX(u,v)を球面のパラメ ータ表示の-X(u,v)に対応させる事がわかる

  • 2重積分について(ver.2)

    領域D:0≦x≦y^2、0≦y≦1の内部で2曲面z=x^3とxy平面で囲まれた立体。 これに関してはさっぱりわかりません ヒントでもいいんで助言をお願いします。

  • 重積分

    D = { (x, y); 1<= x+y <=2, x >=0, y>=0 } とする。二重積分 I = ∬(x^2+y^2)/(x+y)^2 dxdy について次の問いに答えよ。 (1) u = x-y, v = x+y とおく。x, y をu, vで表せ。 (2) 行列式  | δx/δu δx/δv | を求めよ。  | δy/δu δy/δv | (3) (1)の変換でDに対応するuv平面の集合をD'とする。D'を図示せよ。 (4) I を求めよ。 (1)において x = (u+v)/2 y = (v-u)/2 というのも分かり,(2)においても 行列式 = 1/2がわかりました。 (3)において平面の集合D' としたとき 1<=v<=2, -v<=u<=v といのもわかりましたが(合っているかはわかりませんが)。どのように図示したらいいのでしょうか?

  • 立体の体積 極座標 (二重積分)

    次の立体の体積を求めよ。 (1)曲面z=4-(x^2)-(y^2)とxy平面で囲まれた立体 (2)球(x^2)+(y^2)+(z^2)=4が、円柱(x^2)+(y^2)=2xで切り取られる部分。 二重積分と極座標を用いるってのはわかりましたが、半径をr,角度をθとすると、それらの積分区間がわかりません。よろしくお願いします。

  • 球体の面積のパラメータ表示

    半径がr(>0)の球面のパラメータ表示を利用して、球面の面積を求めよ、と言う問題です。面積をSとしたときに  S=4πr^2  に帰着するように、式を展開したいです。そのパラメータ表示は、 1. P(u,v)=(r cosu cosv, r cosu sinv, r sinu) 2. Q(x,y)=(x, y, ±r^2-√(x^2-y^2) ) 3. Φ(u,v)=(√(r^2-v^2) cosu, √(r^2-u^2) cosv, v) の3つです。 1.の場合だと、面積要素|Pu×Pv|(偏微分同士の外積)を求めて、それをuとvで二重積分すれば良いんですよね? ∬|Pu×Pv|dudv になると思うのですが・・・。 その際に、積分範囲は、どのようになるのでしょうか。どなたか、教えてください。お願いします。

  • 3重積分

    1. I=∭_D〖y dxdydz ,〗 D={x≥0,y≥0,z≥0,2x+3y+3z≤6} 2. I=∭_D〖ysin(x+z) dxdydz ,〗 D={0≤x≤π/2,0≤y≤√x,0≤z≤π/2-x} 3.  I=∭_D〖xy+yz+zx) dxdydz ,〗 D={0≤x≤1,0≤y≤x,0≤z≤y} 回答が知りたいです。

  • 3重積分

    I=∭_D〖z dxdydz ,〗 D={0≤x≤1,0≤y≤1+x,0≤z≤x+y} I=∭_D〖z dxdydz ,〗 D={0≤x≤1,0≤y≤1-x,0≤z≤1-x-y} この2問の回答が知りたいです