OKWAVEのAI「あい」が美容・健康の悩みに最適な回答をご提案!
-PR-
解決
済み

行列式の問題で・・・

  • すぐに回答を!
  • 質問No.134083
  • 閲覧数454
  • ありがとう数7
  • 気になる数0
  • 回答数4
  • コメント数0

お礼率 16% (26/154)

 先日、学校でn項ベクトルについて習ったのですが、
一次独立、従属がよく分かりません。
  1  2  4
  3、 1、 2
 -1  5  1
というふうに(3、1)ベクトルが3個というときは
(3,3)行列とみて、この行列式の値が0のときは、
一次従属となるんですよね。そうなると、たとえば、
4項ベクトルが3個となるとどうなるのですか。
どなたかアドバイスお願いします。
通報する
  • 回答数4
  • 気になる
    質問をブックマークします。
    マイページでまとめて確認できます。

質問者が選んだベストアンサー

  • 回答No.4
レベル6

ベストアンサー率 44% (4/9)

ベクトルは縦ベクトルとします。
4次元ベクトルが3個の場合には、まず
4行3列の行列を作ります。次に4つの行から3つを選んで
3行3列の行列を作って、その行列式を考えます。

3つの行をうまく選んで行列式が0でなければ一次独立、
どのように3つの行を選んでも行列式が0ならば一次従属

です。うまく行列式が0でないのに当たれば計算が終わりますが、
一次従属の場合には今の場合10個の行列式を計算しなければ
ならないので大変です。

通常は掃き出し法(またはガウスの消去法)という方法を
使って計算します(行列式の計算も行列が大きくなると
掃き出し法の方が楽です)。これは機械的に計算できる
ので、コンピューターにプログラムすることもできます。
-PR-
-PR-

その他の回答 (全3件)

  • 回答No.1
レベル14

ベストアンサー率 30% (2593/8599)

4×4でないと行列式の値が計算できません。 もう一つベクトルを追加する必要があるはずです。
4×4でないと行列式の値が計算できません。
もう一つベクトルを追加する必要があるはずです。


  • 回答No.2
レベル8

ベストアンサー率 53% (22/41)

行列式は正方行列を前提として定義されます。 m×nの行列でm=nではない場合では基本的に 行列式を導き出せないのです。 一次独立というのは、あるベクトルの集合において、 任意の1つのベクトルを他のベクトルの一次結合 で表現できないことを意味します。 例えば3次元空間に3つのベクトルがあるとして、 これらの3ベクトルがある平面上に乗っている場合、 一次独立にはならず一次従属になります ...続きを読む
行列式は正方行列を前提として定義されます。
m×nの行列でm=nではない場合では基本的に
行列式を導き出せないのです。

一次独立というのは、あるベクトルの集合において、
任意の1つのベクトルを他のベクトルの一次結合
で表現できないことを意味します。

例えば3次元空間に3つのベクトルがあるとして、
これらの3ベクトルがある平面上に乗っている場合、
一次独立にはならず一次従属になります。
この場合一次独立となるにはこの平面に垂直な成分
を持つベクトルが必要となります。

一次独立なベクトルの組で、考えている空間全ての
点を表現することができます。上の一次従属の例では
平面上しか表現できませんよね。

以上のような性質を簡単に調べる方法の一つが
行列式を計算してみることです。

ご呈示の例では4次元空間に3つのベクトルが
あることを意味します。この場合これらの
3ベクトルでは高々3次元空間を表現するだけになります。
  • 回答No.3
レベル10

ベストアンサー率 51% (86/168)

ベクトルが次の条件を満たすとき一次独立と言います。  k1α1 + k2α2 + … + kmαm = 0 ⇒ k1 = k2 = … = km = 0 ここで、k は定数、αは n次元ベクトルとします。 言葉で書くと m 個のベクトルの一次結合が0になるとき、自明な解 k1=k2=…=km=0 以外の解がないならばこれらの m 個のベクトルは一次独立と言います。 これの意味するとこ ...続きを読む
ベクトルが次の条件を満たすとき一次独立と言います。

 k1α1 + k2α2 + … + kmαm = 0 ⇒ k1 = k2 = … = km = 0

ここで、k は定数、αは n次元ベクトルとします。
言葉で書くと m 個のベクトルの一次結合が0になるとき、自明な解 k1=k2=…=km=0
以外の解がないならばこれらの m 個のベクトルは一次独立と言います。

これの意味するところは、dyadics13 さんの書かれている
>あるベクトルの集合において、
>任意の1つのベクトルを他のベクトルの一次結合
>で表現できないことを意味します。
と同じ意味です。

ご質問の場合は、n=4,m=3 ですね。
>4次元空間に3つのベクトルがあることを意味します。
>この場合これらの3ベクトルでは高々3次元空間を表現するだけになります。
ということなのですが、上の式において m < n でも構いません。
3つのベクトルが一次独立のときは4次元空間中で3次元空間を、
一次従属ならば2次元あるいは1次元しか表現できないことになります。

ベクトル空間の次元と同じ個数のベクトルの一次独立性を調べるときには
行列式の値を計算することで確認できます。
このQ&Aで解決しましたか?
関連するQ&A
-PR-
-PR-
このQ&Aにこう思った!同じようなことあった!感想や体験を書こう
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。

その他の関連するQ&A、テーマをキーワードで探す

キーワードでQ&A、テーマを検索する
-PR-
-PR-
-PR-

特集


いま みんなが気になるQ&A

関連するQ&A

-PR-

ピックアップ

-PR-
ページ先頭へ